Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Evaluation of the International 3D Geospatial Data Models and IFC Standard for Implementing an LADM-based 3D Digital Cadastre
    Atazadeh, B ; Olfat, H ; Rajabifard, A ; Saeidian, B (International Federation of Surveyors (FIG), 2022)
    Land Administration Domain Model (LADM) is an international standard for defining both semantic and spatial information connected with rights, restrictions, and responsibilities (RRRs) that affect land, water, built assets, natural resources, underground spaces, and airspaces. Since LADM is currently a conceptual land administration model, one of the main goals for the new version of this standard is to develop technical encodings. These technical encodings would be useful for adopting the LADM in different applications related to land administration. Therefore, the conceptual schema of LADM standard can be implemented in different and varying ways depending on the implementation requirements. The aim of this paper is to evaluate current standards used widely in the domains of geospatial information systems (GIS) and building information modelling (BIM) in terms of their capabilities to serve as an LADM-based technical encoding for 3D digital cadastre implementation. Some of these standards are CityGML, Industry Foundation Classes (IFC), IndoorGML, and LandInfra/InfraGML. There should be a specific use case for each implementation model or technical encoding. For example, a BIM-based implementation of the LADM standard can be useful for 3D digital lodgement of cadastral data when dealing with individual building and property subdivisions. LADM data encoded within a BIM model would be useful during planning, certification, and registration of a new complex subdivision, especially within built environments. In addition, LanInfra/InfraGML can provide another encoding option for 3D digital land registration. More specifically, LanfInfra/InfraGML supports surveying elements which are not well supported in IFC, CityGML and IndoorGML standards. Another option is CityGML technical encoding that can be effective for producing 3D digital property maps for an entire jurisdiction. Current property maps only depict 2D land parcels and ignore spatial and ownership dimensions of vertically placed assets, such as apartments, tunnels, subterranean retail malls, car parks, and utility networks. Developing a CityGML encoding for LADM would be considered a significant milestone towards realising 3D property maps that can provide a fully-integrated representation of underground and aboveground RRRs. Finally, IndoorGML is also another technical encoding which may not an appropriate option for 3D digital cadastre, but it can enable the use of LADM data for lawful indoor navigation. The main contribution of this study is to identify the possible technical encodings for the LADM standard and how various spatial and semantic entities within each encoding can be used to model the equivalent concepts defined in the LADM standard. This would provide guidelines for implementing the conceptual model of LADM using a specific 3D geospatial or BIM standard.
  • Item
    Thumbnail Image
    The current status and ongoing investigations of 2D and 3D digital cadastre (ePlan) in Victoria, Australia
    Olfat, H ; Shojaei, D ; Briffa, M ; Rajabifard, A (CEUR, 2017-01-01)
    EPlan is a collaborative program between the Australian land authorities and the surveying industry, in conjunction with the Intergovernmental Committee on Surveying and Mapping (ICSM) which aims to replace paper and PDF plans with digital files based on a national standard. ePlan was introduced in Victoria in 2011 and has been operational in this jurisdiction for 2D (non-building) plans since 2013. On average, one ePlan application is currently submitted to a digital plan lodgement portal every fortnight. The low uptake of ePlan is caused by a number of challenges which includes surveyors acceptance of adopting a new method of producing plans, the quality of the visualisation service which converts the ePlan LandXML file into PDF as the legal title diagram, and support for 3D building subdivision plans. This paper aims to explore the current status of ePlan implementation in Victoria and discuss the ongoing research programs developed to address the aforementioned challenges.
  • Item
    Thumbnail Image
    3D Digital Cadastre Journey in Victoria, Australia
    Shojaei, D ; Olfat, H ; Briffa, M ; Rajabifard, A (Copernicus GmBH, 2017-10-23)
    Land development processes today have an increasing demand to access three-dimensional (3D) spatial information. Complex land development may need to have a 3D model and require some functions which are only possible using 3D data. Accordingly, the Intergovernmental Committee on Surveying and Mapping (ICSM), as a national body in Australia provides leadership, coordination and standards for surveying, mapping and national datasets has developed the Cadastre 2034 strategy in 2014. This strategy has a vision to develop a cadastral system that enables people to readily and confidently identify the location and extent of all rights, restrictions and responsibilities related to land and real property. In 2014, the land authority in the state of Victoria, Australia, namely Land Use Victoria (LUV), has entered the challenging area of designing and implementing a 3D digital cadastre focused on providing more efficient and effective services to the land and property industry. LUV has been following the ICSM 2034 strategy which requires developing various policies, standards, infrastructures, and tools. Over the past three years, LUV has mainly focused on investigating the technical aspect of a 3D digital cadastre. This paper provides an overview of the 3D digital cadastre investigation progress in Victoria and discusses the challenges that the team faced during this journey. It also addresses the future path to develop an integrated 3D digital cadastre in Victoria.
  • Item
    No Preview Available
    Automatic spatial metadata update: a new approach
    OLFAT, HAMED ; RAJABIFARD, ABBAS ; Kalantari, Mohsen (FIG Congress 2010 - Facing the Challenges - Building the Capacity, 2010)
    Spatial metadata is a vital tool for spatial data management, retrieval and distribution. It is also a critical component for any spatial data sharing platform which provides users with information about the purpose, quality, actuality and accuracy of spatial datasets. With the amount of spatial data exchanged through the web environment, the demand for automatic spatial metadata creation and updating to describe such resources is increasing. However, automatic spatial metadata updating is still in its infancy and automatic approaches are being explored by researchers. So far different processes and tools have been developed which generate and update a limited number of spatial metadata elements in different standard schemes automatically, thus a large amount of spatial data elements need to be imported manually. In order to improve this situation, this paper aims at exploring a new synchronisation approach based on XML/GML technologies to automate spatial metadata update process, by which dataset properties are read from the dataset file and written into its metadata file automatically. The paper first discusses the important role of metadata in Spatial Data Infrastructures (SDIs)as an enabling platform and proposes an architecture to manage spatial metadata. It then compares different methods of spatial metadata generation and presents a spatial metadata automation framework. Based on this framework, the paper finally introduces a synchronisation approach to achieve the spatial metadata automatic update.