Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Justin Costelloe: a champion of arid-zone water research
    Western, AW ; Matic, V ; Peel, MC (Springer Verlag, 2019-11-06)
    Justin Francis Costelloe (Fig. 1) was born in 1965. He grew up in the mining city of Bendigo (Victoria, Australia) before studying Earth Sciences at the University of Melbourne. He went on to work as an exploration geologist in the mining industry in the dryland regions of Australia and Chile. He developed a love of Australia’s desert landscapes and returned to undertake Masters and PhD studies on arid zone hydrology at the University of Melbourne, before continuing as a research fellow and senior research fellow leading arid zone research projects. Justin was a leader in research aimed at understanding surface water and groundwater in Australia’s arid zone and also made important interdisciplinary contributions linking the hydrology and ecology of the arid zone, with a focus on Australia’s iconic Channel Country and the Great Artesian Basin (GAB).
  • Item
    Thumbnail Image
    Equifinality and Flux Mapping: A New Approach to Model Evaluation and Process Representation Under Uncertainty
    Khatami, S ; Peel, MC ; Peterson, TJ ; Western, AW (AMER GEOPHYSICAL UNION, 2019-11)
    Abstract Uncertainty analysis is an integral part of any scientific modeling, particularly within the domain of hydrological sciences given the various types and sources of uncertainty. At the center of uncertainty rests the concept of equifinality, that is, reaching a given endpoint (finality) through different pathways. The operational definition of equifinality in hydrological modeling is that various model structures and/or parameter sets (i.e., equal pathways) are equally capable of reproducing a similar (not necessarily identical) hydrological outcome (i.e., finality). Here we argue that there is more to model equifinality than model structures/parameters, that is, other model components can give rise to model equifinality and/or could be used to explore equifinality within model space. We identified six facets of model equifinality, namely, model structure, parameters, performance metrics, initial and boundary conditions, inputs, and internal fluxes. Focusing on model internal fluxes, we developed a methodology called flux mapping that has fundamental implications in understanding and evaluating model process representation within the paradigm of multiple working hypotheses. To illustrate this, we examine the equifinality of runoff fluxes of a conceptual rainfall‐runoff model for a number of different Australian catchments. We demonstrate how flux maps can give new insights into the model behavior that cannot be captured by conventional model evaluation methods. We discuss the advantages of flux space, as a subspace of the model space not usually examined, over parameter space. We further discuss the utility of flux mapping in hypothesis generation and testing, extendable to any field of scientific modeling of open complex systems under uncertainty.
  • Item
    No Preview Available
    Equifinality and process-based modelling
    Khatami, S ; Peel, M ; Peterson, T ; Western, A (American Geophysical Union, 2018-11-26)
    Equifinality is understood as one of the fundamental difficulties in the study of open complex systems, including catchment hydrology. A review of the hydrologic literature reveals that the term equifinality has been widely used, but in many cases inconsistently and without coherent recognition of the various facets of equifinality, which can lead to ambiguity but also methodological fallacies. Therefore, in this study we first characterise the term equifinality within the context of hydrological modelling by reviewing the genesis of the concept of equifinality and then presenting a theoretical framework. During past decades, equifinality has mainly been studied as a subset of aleatory (arising due to randomness) uncertainty and for the assessment of model parameter uncertainty. Although the connection between parameter uncertainty and equifinality is undeniable, we argue there is more to equifinality than just aleatory parameter uncertainty. That is, the importance of equifinality and epistemic uncertainty (arising due to lack of knowledge) and their implications is overlooked in our current practice of model evaluation. Equifinality and epistemic uncertainty in studying, modelling, and evaluating hydrologic processes are treated as if they can be simply discussed in (or often reduced to) probabilistic terms (as for aleatory uncertainty). The deficiencies of this approach to conceptual rainfall-runoff modelling are demonstrated for selected Australian catchments by examination of parameter and internal flux distributions and interactions within SIMHYD. On this basis, we present a new approach that expands equifinality concept beyond model parameters to inform epistemic uncertainty. The new approach potentially facilitates the identification and development of more physically plausible models and model evaluation schemes particularly within the multiple working hypotheses framework, and is generalisable to other fields of environmental modelling as well.
  • Item
    Thumbnail Image
    Simulating Runoff Under Changing Climatic Conditions: A Framework for Model Improvement
    Fowler, K ; Coxon, G ; Freer, J ; Peel, M ; Wagener, T ; Western, A ; Woods, R ; Zhang, L (American Geophysical Union, 2018-10-01)
    Rainfall-runoff models are often deficient under changing climatic conditions, yet almost no recent studies propose new or improved model structures, instead focusing on model intercomparison, input sensitivity, and/or quantification of uncertainty. This paucity of progress in model development is (in part) due to the difficulty of distinguishing which cases of model failure are truly caused by structural inadequacy. Here we propose a new framework to diagnose the salient cause of poor model performance in changing climate conditions, be it structural inadequacy, poor parameterization, or data errors. The framework can be applied to a single catchment, although larger samples of catchments are helpful to generalize and/or cross-check results. To generate a diagnosis, multiple historic periods with contrasting climate are defined, and the limits of model robustness and flexibility are explored over each period separately and for all periods together. Numerous data-based checks also supplement the results. Using a case study catchment from Australia, improved inference of structural failure and clearer evaluation of model structural improvements are demonstrated. This framework enables future studies to (i) identify cases where poor simulations are due to poor calibration methods or data errors, remediating these cases without recourse to structural changes; and (ii) use the remaining cases to gain greater clarity into what structural changes are needed to improve model performance in changing climate.
  • Item
    Thumbnail Image
    Improved Rainfall‐Runoff Calibration for Drying Climate: Choice of Objective Function
    Fowler, K ; Peel, M ; Western, A ; Zhang, L (American Geophysical Union, 2018-05)
    It has been widely shown that rainfall‐runoff models often provide poor and biased simulations after a change in climate, but evidence suggests existing models may be capable of better simulations if calibration strategies are improved. Common practice is to use “least squares”‐type objective functions, which focus on hydrological behavior during high flows. However, simulation of a drying climate may require a more balanced consideration of other parts of the flow regime, including mid‐low flows and drier years in the calibration period, as a closer analogue of future conditions. Here we systematically test eight objective functions over 86 catchments and five conceptual model structures in southern and eastern Australia. We focus on performance when evaluated over multiyear droughts. The results show significant improvements are possible compared to least squares calibration. In particular, the Refined Index of Agreement (based on sum of absolute error, not sum of squared error) and a new objective function called the Split KGE (which gives equal weight to each year in the calibration series) give significantly better split‐sample results than least squares approaches. This improvement held for all five model structures, regardless of basin characteristics such as slope, vegetation, and across a range of climatic conditions (e.g., mean precipitation between 500 and 1,500 mm/yr). We recommend future studies to avoid least squares approaches (e.g., optimizing NSE or KGE with no prior transformation on streamflow) and adopt these alternative methods, wherever simulations in a drying climate are required.