Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 128
  • Item
    Thumbnail Image
    A Mixed User-Equilibrium and System-Optimal Traffic Flow for Connected Vehicles Stated as a Complementarity Problem
    Bagloee, SA ; Sarvi, M ; Patriksson, M ; Rajabifard, A (WILEY, 2017-07)
    Abstract Connected vehicles (CVs), be they autonomous vehicles or a fleet of cargo carriers or Uber, are a matter of when they become a reality and not if. It is not unreasonable to think that CV technology may have a far‐reaching impact, even to the genesis of a completely new traffic pattern. To this end, the literature has yet to address the routing behavior of the CVs, namely traffic assignment problem (TAP) (perhaps it is assumed, they ought to follow the traditional shortest possible paths, known as user equilibrium [UE]). It is possible that real‐time data could be derived from the vehicles’ communications that in turn could be used to achieve a better traffic circulation. In this article, we propose a mathematical formulation to ensure the CVs are seeking the system optimal (SO) principles, while the remainder continue to pursue the old‐fashioned UE pattern. The model is formulated as a nonlinear complementarity problem (NCP). This article contributes to the literature in three distinct ways: (i) mathematical formulation for the CVs’ routing, stated as a mixed UE‐SO traffic pattern, is proposed; (ii) a variety of realistic features are explicitly considered in the solution to the TAP including road capacity, elastic demand, multiclass and asymmetric travel time; and (iii) formal proof of the existence and uniqueness of the solutions are also presented. The proposed methodology is applied to the networks of Sioux‐Falls and Melbourne.
  • Item
    Thumbnail Image
    The Feasibility of a BIM-Driven Approach to Support Building Subdivision Workflows-Case Study of Victoria, Australia
    Olfat, H ; Atazadeh, B ; Shojaei, D ; Rajabifard, A (MDPI, 2019-11)
    Cities are facing dramatic challenges due to population growth and the massive development of high-rises and complex structures, both above and below the ground surface. Decision-makers require access to an efficient land and property information system, which is digital, three-dimensional (3D), spatially accurate, and dynamic containing interests in land (rights, restrictions and responsibilities—RRRs) to manage the legal and physical complexities of urban environments. However, at present, building subdivision workflows only support the two-dimensional (2D) building subdivision plans in PDF or image formats. These workflows result in a number of issues, such as the plan preparation being complex, the examination process being labor intensive and requiring technical expertise, information not being easily reusable by all subdivision stakeholders, queries, analyses, and decision-making being inefficient, and the RRRs interpretation being difficult. The aim of this research is to explore the potential of using Building Information Modelling (BIM) and its open standards to support the building subdivision workflows. The research that is presented in this paper proposes a BIM-driven building subdivision workflow, evaluated through a case study in the state of Victoria, Australia. The results of the study confirmed that the proposed workflow could provide a feasible integrated mechanism for stakeholders to share, document, visualize, analyze, interpret, and reuse 3D digital cadastral data over the lifespan of a building subdivision project.
  • Item
    Thumbnail Image
    Floods, Bushfires and Sectoral Economic Output in Australia, 1978-2014
    Ulubasoglu, MA ; Rahman, MH ; Onder, YK ; Chen, Y ; Rajabifard, A (WILEY, 2019-03)
    Using state‐level annual variation in natural disasters and economic output in Australia, we estimate the direct effects of floods and bushfires on sectoral gross value added during the period 1978–2014. We find that floods exert an adverse and persistent effect on the outputs of agriculture, mining, construction and financial services sectors. For example, our estimates indicate that a state that experienced a flood in a given year encountered, on average, 5–6 per cent lower agricultural output in both that year and the following year, compared to another state with no such flood experience. Sectoral responses to bushfires are more nuanced.
  • Item
    Thumbnail Image
    People Choice Modelling for Evacuation of Tall Buildings
    Aleksandrov, M ; Rajabifard, A ; Kalantari, M ; Lovreglio, R ; Gonzalez, VA (SPRINGER, 2018-09)
  • Item
    Thumbnail Image
    Investigating pedestrians’ obstacle avoidance behaviour
    Alhawsawi, A ; Sarvi, M ; Haghani, M ; Rajabifard, A (Forschungszentrum Julich, Zentralbibliothek, 2020-03-27)
    Modelling and simulating pedestrian motions are standard ways to investigate crowd dynamics aimed to enhance pedestrians’ safety. Movement of people is affected by interactions with one another and with the physical environment that it may be a worthy line of research. This paper studies the impact of speed on how pedestrians respond to the obstacles (i.e. Obstacles avoidance behaviour). A field experiment was performed in which a group of people were instructed to perform some obstacles avoidance tasks at two levels of normal and high speeds. Trajectories of the participants are extracted from the video recordings for the subsequent intentions:(i) to seek out the impact of total speed, x and yaxis (ii) to observe the impact of the speed on the movement direction, x-axis, (iii) to find out the impact of speed on the lateral direction, y-axis. The results of the experiments could be used to enhance the current pedestrian simulation models.
  • Item
    Thumbnail Image
    Urban Analytics Data Infrastructure: Critical SDI for Measuring and Monitoring The National and Local Progress of SDGs
    Rajabifard, A ; Sabri, S ; Chen, Y ; Agunbiade, M ; Kalantari, M ; Rajabifard, A (CRC Press - Taylor & Francis Group, 2020-01-01)
    This chapter describes an innovative Spatial Data Infrastructure to support urban analytics and urban research capabilities focused on Australian cities, called Urban Analytics Data Infrastructure (UADI). The UADI provides opportunity for multi-disciplinary, and cross-jurisdictional analytics. The chapter highlights the UADI capabilities to be adopted for deriving the SDG indicators as a response to the UN-GGIM strategic framework 2017 { 2021 technical requirements.
  • Item
    Thumbnail Image
    Applying BIM to support dispute avoidance in managing multi-owned buildings
    Shin, J ; Rajabifard, A ; Kalantari, M ; Atazadeh, B (Elsevier, 2020-12-01)
    With the growth of high-density living, disputes experienced by residents in multi-owned buildings (MOBs) have become an ongoing challenge in urban areas. A significant number of the disputations have found their root cause in the issues concerning improper use and management of MOBs by residents. It stems from their inaccurate understanding of ownership rights that are inherently 3D but using 2D cadastral survey plans, authoritative documents of ownership. This research explores the ability of building information modeling (BIM) to address required information for improving the perception of ownership rights that affect resident behaviors in managing MOBs. An open data model of BIM is extended to accommodate the necessary information for preventing resident misbehaviors that led to dispute cases in Victoria state, Australia. In this study, we implement BIM data of an MOB where a real dispute happened to demonstrate the validity of the enriched data model on the information delivery and an enhanced understanding of ownership rights. It is confirmed that the use of BIM facilitates the alleviation of the misbehaviors by informing residents with accurate communication of ownership rights and could support the avoidance of disputes in MOBs.
  • Item
    No Preview Available
    Earthquake Vulnerability of Port Structures in Indonesia
    Widyastuti, H ; Lumantarna, E ; Sofi, M ; Ramli, MI ; Oktavianus, Y ; Rajabifard, A (IOPscience, 2020-02-08)
    Indonesia is located in a high seismic region and is in one of the most vulnerable countries likely to experience earthquakes. The impact of earthquakes on port structures can have an enormous impact on the economy if the earthquake hazard is not acknowledged, essential elements of the transportation system not identified, and damage prevention procedures not applied. In this project, the seismic performance of critical infrastructures, such as post structures as designed and constructed, are assessed. Outcomes of the assessment enable vulnerable elements to be identified leading to design recommendations. The project is conducted based on data collection, field survey, site investigations, experiments, and computer modelling and simulations.
  • Item
    Thumbnail Image
    Advances in techniques to formulate the watertight concept for cadastre
    Asghari, A ; Kalantari, M ; Rajabifard, A (Wiley, 2020-10-20)
    The world’s rising urban density expansion has resulted in a proliferation of attempts to efficiently use space and a higher level of spatial complexity in metropolitan areas. 3D geospatial data models are increasingly being embraced to facilitate communicating the spatial dimensions of complex built environments in different applications. For example, the use of 3D models in land administration systems has been recognized as a good approach for communicating the spatial complexity of legal spaces within multi‐storey buildings. The spatial extent of legal space—to which rights, restrictions and responsibilities relate in a 3D digital cadastre—needs to be accurately defined and geometrically closed; watertight. Therefore, this study aims to address the challenges regarding checking the closure of diverse 3D legal spaces and engage several techniques to formulate the watertight concept for cadastre. The research’s methodology is built on a 3D polyhedral surface using a half‐edge data structure. A primitive check is employed to assess the spatial consistency of lower‐dimensional primitives of 3D objects. Subsequently, advanced closure checks ensure the closure of volumetric legal spaces represented by 2‐manifold and non‐2‐manifold data models. The article concludes that, by adopting the proposed approaches, the internal spatial consistency of legal spaces in urban land administration will be certified.
  • Item
    Thumbnail Image
    A structured framework for 3D cadastral data validation − a case study for Victoria, Australia
    Asghari, A ; Kalantari, M ; Rajabifard, A (Elsevier BV, 2020-11-01)
    There are a wide variety of cadastral objects, ranging from simple 2D entities such as a land parcel, to complex 3D objects such as multistory/multi-owned buildings. The complex infrastructures development happening above and below the ground complicates the processes required for defining rights, restrictions and responsibilities in 3D (3D RRRs). Even in the current, predominantly, 3D analogue cadastral system which relies on 2D drawings and representations, defining 3D RRRs is still a complicated task. With the widespread use of 3D geospatial information technologies, it is increasingly becoming easy to realise and interpret a 3D digital cadastre system. As part of the process of transition from the 2D representation of cadastre towards a 3D digital cadastre, not only will 2D representations be replaced with 3D models, but the examination workflow and its principles also need to be able to manage 3D models. Developing principles and validation rules is a critical requirement to guarantee that the diverse cadastral data is trustable and contains enough detail to define the spatial and legal extents of ownership. This paper proposes a structured framework to define validation rules for 3D cadastral models. The paper’s methodology utilises a case study approach where a plan examination process in Victoria, Australia has been analysed to investigate the principles of examining cadastral plans, and further expanded on for validating 3D digital plans. The paper concludes with a discussion on the implications of the proposed 3D validation rules and proposes future research within the topic of 3D cadastral data validation.