Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    No Preview Available
    A predictive model for spatio-temporal variability in stream water quality
    Guo, D ; Lintern, A ; Webb, JA ; Ryu, D ; Bende-Michl, U ; Liu, S ; Western, AW ( 2019-07-23)
    Abstract. Degraded water quality in rivers and streams can have large economic, societal and ecological impacts. Stream water quality can be highly variable both over space and time. To develop effective management strategies for riverine water quality, it is critical to be able to predict these spatio-temporal variabilities. However, our current capacity to model stream water quality is limited, particularly at large spatial scales across multiple catchments. This is due to a lack of understanding of the key controls that drive spatio-temporal variabilities of stream water quality. To address this, we developed a Bayesian hierarchical statistical model to analyse the spatio-temporal variability in stream water quality across the state of Victoria, Australia. The model was developed based on monthly water quality monitoring data collected at 102 sites over 21 years. The modelling focused on six key water quality constituents: total suspended solids (TSS), total phosphorus (TP), filterable reactive phosphorus (FRP), total Kjeldahl nitrogen (TKN), nitrate-nitrite (NOx), and electrical conductivity (EC). Among the six constituents, the models explained varying proportions of variation in water quality. EC was the most predictable constituent (88.6 % variability explained) and FRP had the lowest predictive performance (19.9 % variability explained). The models were validated for multiple sets of calibration/validation sites and showed robust performance. Temporal validation revealed a systematic change in the TSS model performance across most catchments since an extended drought period in the study region, highlighting potential shifts in TSS dynamics over the drought. Further improvements in model performance need to focus on: (1) alternative statistical model structures to improve fitting for the low concentration data, especially records below the detection limit; and (2) better representation of non-conservative constituents by accounting for important biogeochemical processes. We also recommend future improvements in water quality monitoring programs which can potentially enhance the model capacity, via: (1) improving the monitoring and assimilation of high-frequency water quality data; and (2) improving the availability of data to capture land use and management changes over time.
  • Item
    Thumbnail Image
    Key factors influencing differences in stream water quality across space
    Lintern, A ; Webb, JA ; Ryu, D ; Liu, S ; Bende-Michl, U ; Waters, D ; Leahy, P ; Wilson, P ; Western, AW (WILEY, 2018-01-01)
    Globally, many rivers are experiencing declining water quality, for example, with altered levels of sediments, salts, and nutrients. Effective water quality management requires a sound understanding of how and why water quality differs across space, both within and between river catchments. Land cover, land use, land management, atmospheric deposition, geology and soil type, climate, topography, and catchment hydrology are the key features of a catchment that affect: (1) the amount of suspended sediment, nutrient, and salt concentrations in catchments (i.e., the source), (2) the mobilization ,and (3) the delivery of these constituents to receiving waters. There are, however, complexities in the relationship between landscape characteristics and stream water quality. The strength of this relationship can be influenced by the distance and spatial arrangement of constituent sources within the catchment, cross correlations between landscape characteristics, and seasonality. A knowledge gap that should be addressed in future studies is that of interactions and cross correlations between landscape characteristics. There is currently limited understanding of how the relationships between landscape characteristics and water quality responses can shift based on the other characteristics of the catchment. Understanding the many forces driving stream water quality and the complexities and interactions in these forces is necessary for the development of successful water quality management strategies. This knowledge could be used to develop predictive models, which would aid in forecasting of riverine water quality. WIREs Water 2018, 5:e1260. doi: 10.1002/wat2.1260 This article is categorized under: Science of Water > Hydrological Processes Science of Water > Water Quality
  • Item
    Thumbnail Image
    An evaluation of a methodology for seasonal soil water forecasting for Australian dry land cropping systems
    Western, AW ; Dassanayake, KB ; Perera, KC ; Argent, RM ; Alves, O ; Young, G ; Ryu, D (ELSEVIER, 2018-05-01)
    Soil water is a critical resource in many rain-fed agricultural systems. Climate variability represents a significant risk in these systems, which has been addressed in the past through seasonal weather outlooks. This study undertakes a pilot assessment of the potential to extend seasonal weather outlooks to plant available soil water (PASW). We analyse 20 sites in the southeast Australian wheat belt using seasonal weather outlooks from the Predictive Ocean-Atmosphere Model for Australia (POAMA; (the operational seasonal model of the Australian Bureau of Meteorology), which were downscaled and used in conjunction with the Agricultural Production Simulator (APSIM). Hindcast rainfall, potential evapotranspiration (PET) and PASW outlooks were produced on a monthly basis for 33 years at a point scale. The outlooks were assessed using a range of ensemble verification tools. The results showed hit rates that outperformed climatology for rainfall and PET in the short-term (0–2 months), and for PASW with longer lead times (2–5 months). Continuous rank probability skill scores (CRPSS) were generally statistically worse than climatology for rainfall and PET and statistically better than climatology for PASW over 1–3 months. The influence of initial soil water is seasonally dependent, with longer dependence in low evapotranspiration periods. Improved weather model downscaling approaches would transition to climatology and could improve both weather and PASW outlooks. PASW outlooks were strongly reliant on initial conditions, indicating the importance of understanding current soil water status, which needs to be interpreted in a seasonal context as its influence varies over the year. Expanded operational soil water monitoring would be important if PASW outlooks are to become routine.
  • Item
    Thumbnail Image
    Improving the representation of cropland sites in the Community Land Model (CLM) version 5.0
    Boas, T ; Bogena, H ; Grünwald, T ; Heinesch, B ; Ryu, D ; Schmidt, M ; Vereecken, H ; Western, A ; Hendricks-Franssen, H-J (Copernicus Publications, 2020)
    The incorporation of a comprehensive crop module in land surface models offers the possibility to study the effect of agricultural land use and land management changes on the terrestrial water, energy and biogeochemical cycles. It may help to improve the simulation of biogeophysical and biogeochemical processes on regional and global scales in the framework of climate and land use change. In this study, the performance of the crop module of the Community Land Model version 5 (CLM5) was evaluated at point scale with site specific field data focussing on the simulation of seasonal and inter-annual variations in crop growth, planting and harvesting cycles, and crop yields as well as water, energy and carbon fluxes. In order to better represent agricultural sites, the model was modified by (1) implementing the winter wheat subroutines after Lu et al. (2017) in CLM5; (2) implementing plant specific parameters for sugar beet, potatoes and winter wheat, thereby adding these crop functional types (CFT) to the list of actively managed crops in CLM5; (3) introducing a cover cropping subroutine that allows multiple crop types on the same column within one year. The latter modification allows the simulation of cropping during winter months before usual cash crop planting begins in spring, which is a common agricultural management technique in humid and sub-humid regions. We compared simulation results with field data and found that both the parameterization of the CFTs, as well as the winter wheat subroutines, led to a significant simulation improvement in terms of energy fluxes, leaf area index (LAI), net ecosystem exchange (RMSE reduction for latent and sensible heat by up to 57 % and 59 % respectively) and crop yield (up to 87 % improvement in winter wheat yield prediction) compared with default model results. The cover cropping subroutine yielded a substantial improvement in representation of field conditions after harvest of the main cash crop (winter season) in terms of LAI curve and latent heat flux (reduction of winter time RMSE for latent heat flux by 42 %). We anticipate that our model modifications offer opportunities to improve yield predictions, to study the effects of large-scale cover cropping on energy fluxes, soil carbon and nitrogen pools, and soil water storage in future studies with CLM5.
  • Item
    Thumbnail Image
    A bayesian hierarchical model to predict spatio-temporal variability in river water quality at 102 catchments
    Guo, D ; Lintern, A ; Webb, A ; Ryu, D ; Bende-Michl, U ; Liu, S ; Western, A (Copernicus GmbH, 2020)
    Our current capacity to model stream water quality is limited particularly at large spatial scales across multiple catchments. To address this, we developed a Bayesian hierarchical statistical model to simulate the spatio-temporal variability in stream water quality across the state of Victoria, Australia. The model was developed using monthly water quality monitoring data over 21 years, across 102 catchments, which span over 130,000 km2. The modelling focused on six key water quality constituents: total suspended solids (TSS), total phosphorus (TP), filterable reactive phosphorus (FRP), total Kjeldahl nitrogen (TKN), nitrate-nitrite (NOx), and electrical conductivity (EC). The model structure was informed by knowledge of the key factors driving water quality variation, which had been identified in two preceding studies using the same dataset. Apart from FRP, which is hardly explainable (19.9%), the model explains 38.2% (NOx) to 88.6% (EC) of total spatio-temporal variability in water quality. Across constituents, the model generally captures over half of the observed spatial variability; temporal variability remains largely unexplained across all catchments, while long-term trends are well captured. The model is best used to predict proportional changes in water quality in a Box-Cox transformed scale, but can have substantial bias if used to predict absolute values for high concentrations. This model can assist catchment management by (1) identifying hot-spots and hot moments for waterway pollution; (2) predicting effects of catchment changes on water quality e.g. urbanization or forestation; and (3) identifying and explaining major water quality trends and changes. Further model improvements should focus on: (1) alternative statistical model structures to improve fitting for truncated data, for constituents where a large amount of data below the detection-limit; and (2) better representation of non-conservative constituents (e.g. FRP) by accounting for important biogeochemical processes.
  • Item
    No Preview Available
    Supplementary material to: "A predictive model for spatio-temporal variability in stream water quality"
    Guo, D ; Lintern, A ; Webb, JA ; Ryu, D ; Bende-Michl, U ; Liu, S ; Western, AW (Copernicus Publications, 2019)
  • Item
    Thumbnail Image
    A data-based predictive model for spatiotemporal variability in stream water quality
    Guo, D ; Lintern, A ; Webb, JA ; Ryu, D ; Bende-Michl, U ; Liu, S ; Western, AW (COPERNICUS GESELLSCHAFT MBH, 2020-02-24)
    Abstract. Our current capacity to model stream water quality is limited – particularly at large spatial scales across multiple catchments. To address this, we developed a Bayesian hierarchical statistical model to simulate the spatiotemporal variability in stream water quality across the state of Victoria, Australia. The model was developed using monthly water quality monitoring data over 21 years and across 102 catchments (which span over 130 000 km2). The modeling focused on six key water quality constituents: total suspended solids (TSS), total phosphorus (TP), filterable reactive phosphorus (FRP), total Kjeldahl nitrogen (TKN), nitrate–nitrite (NOx) and electrical conductivity (EC). The model structure was informed by knowledge of the key factors driving water quality variation, which were identified in two preceding studies using the same dataset. Apart from FRP, which is hardly explained (19.9 %), the model explains 38.2 % (NOx) to 88.6 % (EC) of the total spatiotemporal variability in water quality. Across constituents, the model generally captures over half of the observed spatial variability; the temporal variability remains largely unexplained across all catchments, although long-term trends are well captured. The model is best used to predict proportional changes in water quality on a Box–Cox-transformed scale, but it can have substantial bias if used to predict absolute values for high concentrations. This model can assist catchment management by (1) identifying hot spots and hot moments for waterway pollution; (2) predicting the effects of catchment changes on water quality, e.g., urbanization or forestation; and (3) identifying and explaining major water quality trends and changes. Further model improvements should focus on the following: (1) alternative statistical model structures to improve fitting for truncated data (for constituents where a large amount of data fall below the detection limit); and (2) better representation of nonconservative constituents (e.g., FRP) by accounting for important biogeochemical processes.
  • Item
    Thumbnail Image
    Many Commonly Used Rainfall‐Runoff Models Lack Long, Slow Dynamics: Implications for Runoff Projections
    Fowler, K ; Knoben, W ; Peel, M ; Peterson, T ; Ryu, D ; Saft, M ; Seo, K ; Western, A (American Geophysical Union (AGU), 2020-05)
    Evidence suggests that catchment state variables such as groundwater can exhibit multiyear trends. This means that their state may reflect not only recent climatic conditions but also climatic conditions in past years or even decades. Here we demonstrate that five commonly used conceptual “bucket” rainfall‐runoff models are unable to replicate multiyear trends exhibited by natural systems during the “Millennium Drought” in south‐east Australia. This causes an inability to extrapolate to different climatic conditions, leading to poor performance in split sample tests. Simulations are examined from five models applied in 38 catchments, then compared with groundwater data from 19 bores and Gravity Recovery and Climate Experiment data for two geographic regions. Whereas the groundwater and Gravity Recovery and Climate Experiment data decrease from high to low values gradually over the duration of the 13‐year drought, the model storages go from high to low values in a typical seasonal cycle. This is particularly the case in the drier, flatter catchments. Once the drought begins, there is little room for decline in the simulated storage, because the model “buckets” are already “emptying” on a seasonal basis. Since the effects of sustained dry conditions cannot accumulate within these models, we argue that they should not be used for runoff projections in a drying climate. Further research is required to (a) improve conceptual rainfall‐runoff models, (b) better understand circumstances in which multiyear trends in state variables occur, and (c) investigate links between these multiyear trends and changes in rainfall‐runoff relationships in the context of a changing climate.
  • Item
    Thumbnail Image
    Towards estimating root-zone soil moisture using surface multispectral and thermal sensing: A spectral and hydrometeorological dataset from the Dookie experiment site, Victoria, Australia
    Akuraju, VR ; Ryu, D ; Western, AW ; Young, RI (John Wiley & Sons Ltd., 2019-07-01)
    This paper describes surface hydrometeorological and spectral datasets collected from two tower sites located in the University of Melbourne's Dookie experimental farm, Victoria, Australia. The datasets were collected from different vegetation types including wheat, canola, and grazed pasture during the 2012, 2013, and 2014 cropping seasons. The dataset includes 30‐min frequency latent and sensible heat flux measurements and layer‐average soil moisture data at profile depths of 0–5, 0–30, 30–60, 60–90, and 90–120 cm. Air temperature, wind speed, wind direction, relative humidity, precipitation, and incoming and outgoing longwave and shortwave radiation data were also collected from two locations in the study area. The dataset described in this paper is available online.
  • Item
    Thumbnail Image
    A web-based interface to visualize and model spatio-temporal variability of stream water quality
    Guo, D ; Lintern, A ; Webb, J ; Ryu, D ; Liu, S ; Bende-Michl, U ; Leahy, P ; Waters, D ; Watson, M ; Wilson, P ; Western, A ; Vietz, G ; Rutherfurd, I (River Basement Management Society, 2018)
    Understanding the spatio-temporal variability in stream water quality is critical for designing effective water quality management strategies. To facilitate this, we developed a web-based interface to visualize and model the spatio-temporal variability of stream water quality in Victoria. We used a dataset of long-term monthly water quality measurements from 102 monitoring sites in Victoria, focusing on six water quality constituents: total suspended solids (TSS), total phosphorus (TP), filterable reactive phosphorus (FRP), total Kjedahl nitrogen (TKN), nitrate-nitrite (NOx), and electrical conductivity (EC). The interface models spatio-temporal variability in water quality via a Bayesian hierarchical modelling framework, and produces summaries of (1) the key driving factors of spatio-temporal variability and (2) model performance assessed by multiple metrics. Additional features include predicting the time-averaged mean concentration at an un-sampled site, and testing the impact of land-use changes on the mean concentration at existing sites. This tool can be very useful in supporting the decision-making processes of catchment managers in (1) understanding the key drivers of changes in water quality and (2) designing water quality mitigation and restoration strategies.