Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    No Preview Available
    Monte Carlo and Subset Simulations-Based Reliability Analysis of Composite Frames Using OpenSees
    Tran, H ; Thai, HT ; Uy, B (Springer Nature Switzerland, 2023-01-01)
  • Item
    No Preview Available
    Numerical Study of a Novel Self-lock Connection for Modular Tall Buildings
    Thai, HT (Springer Nature Singapore, 2023-01-01)
  • Item
    No Preview Available
    ADVANCED ANALYSIS OF STEEL‐CONCRETE COMPOSITE BUILDINGS
    Tran, H ; Thai, HT ; Ngo, T ; Uy, B ; Li, D ; Mo, J (Wiley, 2023-02)
    Abstract This paper presents a nonlinear simulation method for composite framing systems constituted from concrete‐filled steel tubular columns (CFST) and composite beam systems. A force‐based fibre beam‐column element in OpenSees was adopted. This element was capable of accurately capturing the local buckling of steel and the confining effect of concrete using the modified stress‐strain relationships of the steel and concrete fibres. A source code for the connection element was also developed in OpenSees to capture the semi‐rigid behaviour of the beam‐to‐column connections of the composite buildings. Through the verification with numerous experiments, the model has shown its capability of accurately simulating composite frames with simplicity and less computational cost. An extensive parametric study was conducted to examine the effect of the bracing systems and the rigidity of the connections on the behaviour and instability of the whole composite buildings.
  • Item
    No Preview Available
    Innovative composite structural systems for modular tall buildings
    Thai, HT ; Knobloch, M ; Kuhlmann, U ; Kurz, W ; Schafer, M (https://www.compositeconstructionix.com/, 2021)
    Modular or offsite construction is believed to shape the future of the construction industry as it possesses significant benefits over traditional onsite construction methods. However, most of its application are limited to steel or concrete buildings. Although steel-concrete composite structural system has many merits over the steel and concrete systems, its application in modular buildings is very limited. This paper explores recent developments of composite systems for modular high-rise buildings. They include modular units for resisting vertical gravity loads and lateral structural systems for resisting horizontal forces from wind and earthquake loadings and progressive collapse due to accidental loads such as fire, explosions and impact. Various inter-module joining methods developed in the literature will also be reviewed. Finally, a case study of the most efficient connection is presented to explore its applicability to high-rise modular buildings.
  • Item
    Thumbnail Image
    Innovative composite structural systems for modular tall buildings
    Thai, HT ; Knobloch, M ; Kuhlmann, U ; Kurz, W ; Schafer, M (https://www.compositeconstructionix.com/, 2021)
    Modular or offsite construction is believed to shape the future of the construction industry as it possesses significant benefits over traditional onsite construction methods. However, most of its application are limited to steel or concrete buildings. Although steel-concrete composite structural system has many merits over the steel and concrete systems, its application in modular buildings is very limited. This paper explores recent developments of composite systems for modular high-rise buildings. They include modular units for resisting vertical gravity loads and lateral structural systems for resisting horizontal forces from wind and earthquake loadings and progressive collapse due to accidental loads such as fire, explosions and impact. Various inter-module joining methods developed in the literature will also be reviewed. Finally, a case study of the most efficient connection is presented to explore its applicability to high-rise modular buildings.