Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 24
  • Item
    Thumbnail Image
    Energy Efficient Time Synchronization in WSN for Critical Infrastructure Monitoring
    Rao, AS ; Gubbi, J ; Tuan, N ; Nguyen, J ; Palaniswami, M ; Wyld, DC ; Wozniak, M ; Chaki, N ; Meghanathan, N ; Nagamalai, D (SPRINGER-VERLAG BERLIN, 2011-01-01)
    Wireless Sensor Networks (WSN) based Structural Health Monitoring (SHM) is becoming popular in analyzing the life of critical infrastructure such as bridges on a continuous basis. For most of the applications, data aggregation requires high sampling rate. A need for accurate time synchronization in the order of 0.6 − 9 μs every few minutes is necessary for data collection and analysis. Two-stage energy-efficient time synchronization is proposed in this paper. Firstly, the network is divided into clusters and a head node is elected using Low-Energy Adaptive Clustering Hierarchy based algorithm. Later, multiple packets of different lengths are used to estimate the delay between the elected head and the entire network hierarchically at different levels. Algorithmic scheme limits error to 3-hop worst case synchronization error. Unlike earlier energy-efficient time synchronization schemes, the achieved results increase the lifetime of the network.
  • Item
    Thumbnail Image
    Applications of phase change materials in concrete for sustainable built environment: a review
    JAYALATH, A ; Mendis, PA ; Gammampila, GR ; Aye, L (ICSECM 2011, 2011)
    The fast economic development around the globe and high standards of living imposes an ever increasing demand for energy. As a prime consumer of world‟s material and energy resources building and construction industry has a great potential in developing new efficient and environmentally friendly materials to reduce energy consumptions in buildings. Thermal energy storage systems (TES) with Phase change materials (PCM) offer attractive means of improving the thermal mass and the thermal comfort within a building. PCMs are latent heat thermal storage (LHTS) materials with high energy storage density compared to conventional sensible heat storage materials. Concrete incorporating PCM improves the thermal mass of the building which reduces the space conditioning energy consumption and extreme temperature fluctuations within the building. The heat capacity and high density of concrete coupled with latent heat storage of PCM provides a novel energy saving concepts for sustainable built environment. Microencapsulation is a latest and advanced technology for incorporation of PCM in to concrete which creates finely dispersed PCMs with high surface area for greater amount of heat transfer. This paper reviews available literature on Phase change materials in concrete, its application and numerical modelling of composite concrete. However most of the existing TES systems have been explored with wallboards and plaster materials and comparatively a few researches have been done on TES systems using cementitious materials. Thus, there is a need for comprehensive experimental and analytical investigations on PCM applications with cementitious materials as the most widely used construction materials in buildings.
  • Item
    Thumbnail Image
    Endoplasmic reticulum stress promotes LIPIN2-dependent hepatic insulin resistance.
    Ryu, D ; Seo, W-Y ; Yoon, Y-S ; Kim, Y-N ; Kim, SS ; Kim, H-J ; Park, T-S ; Choi, CS ; Koo, S-H (American Diabetes Association, 2011-04)
    OBJECTIVE: Diet-induced obesity (DIO) is linked to peripheral insulin resistance-a major predicament in type 2 diabetes. This study aims to identify the molecular mechanism by which DIO-triggered endoplasmic reticulum (ER) stress promotes hepatic insulin resistance in mouse models. RESEARCH DESIGN AND METHODS: C57BL/6 mice and primary hepatocytes were used to evaluate the role of LIPIN2 in ER stress-induced hepatic insulin resistance. Tunicamycin, thapsigargin, and lipopolysaccharide were used to invoke acute ER stress conditions. To promote chronic ER stress, mice were fed with a high-fat diet for 8-12 weeks. To verify the role of LIPIN2 in hepatic insulin signaling, adenoviruses expressing wild-type or mutant LIPIN2, and shRNA for LIPIN2 were used in animal studies. Plasma glucose, insulin levels as well as hepatic free fatty acids, diacylglycerol (DAG), and triacylglycerol were assessed. Additionally, glucose tolerance, insulin tolerance, and pyruvate tolerance tests were performed to evaluate the metabolic phenotype of these mice. RESULTS: LIPIN2 expression was enhanced in mouse livers by acute ER stress-inducers or by high-fat feeding. Transcriptional activation of LIPIN2 by ER stress is mediated by activating transcription factor 4, as demonstrated by LIPIN2 promoter assays, Western blot analyses, and chromatin immunoprecipitation assays. Knockdown of hepatic LIPIN2 in DIO mice reduced fasting hyperglycemia and improved hepatic insulin signaling. Conversely, overexpression of LIPIN2 impaired hepatic insulin signaling in a phosphatidic acid phosphatase activity-dependent manner. CONCLUSIONS: These results demonstrate that ER stress-induced LIPIN2 would contribute to the perturbation of hepatic insulin signaling via a DAG-protein kinase C ε-dependent manner in DIO mice.
  • Item
    Thumbnail Image
    The within-day behaviour of 6 minute rainfall intensity in Australia
    Western, AW ; Anderson, B ; Siriwardena, L ; Chiew, FHS ; Seed, A ; Bloeschl, G (COPERNICUS GESELLSCHAFT MBH, 2011)
    Abstract. The statistical behaviour and distribution of high-resolution (6 min) rainfall intensity within the wet part of rainy days (total rainfall depth >10 mm) is investigated for 42 stations across Australia. This paper compares nine theoretical distribution functions (TDFs) in representing these data. Two goodness-of-fit statistics are reported: the Root Mean Square Error (RMSE) between the fitted and observed within-day distribution; and the coefficient of efficiency for the fit to the highest rainfall intensities (average intensity of the 5 highest intensity intervals) across all days at a site. The three-parameter Generalised Pareto distribution was clearly the best performer. Good results were also obtained from Exponential, Gamma, and two-parameter Generalized Pareto distributions, each of which are two parameter functions, which may be advantageous when predicting parameter values. Results of different fitting methods are compared for different estimation techniques. The behaviour of the statistical properties of the within-day intensity distributions was also investigated and trends with latitude, Köppen climate zone (strongly related to latitude) and daily rainfall amount were identified. The latitudinal trends are likely related to a changing mix of rainfall generation mechanisms across the Australian continent.
  • Item
    Thumbnail Image
    Measuring physical activity during pregnancy
    Harrison, CL ; Thompson, RG ; Teede, HJ ; Lombard, CB (BMC, 2011-03-21)
    BACKGROUND: Currently, little is known about physical activity patterns in pregnancy with prior estimates predominantly based on subjective assessment measures that are prone to error. Given the increasing obesity rates and the importance of physical activity in pregnancy, we evaluated the relationship and agreement between subjective and objective physical activity assessment tools to inform researchers and clinicians on optimal assessment of physical activity in pregnancy. METHODS: 48 pregnant women between 26-28 weeks gestation were recruited. The Yamax pedometer and Actigraph accelerometer were worn for 5-7 days under free living conditions and thereafter the International Physical Activity Questionnaire (IPAQ) was completed. IPAQ and pedometer estimates of activity were compared to the more robust and accurate accelerometer data. RESULTS: Of 48 women recruited, 30 women completed the study (mean age: 33.6 ± 4.7 years; mean BMI: 31.2 ± 5.1 kg/m(2)) and 18 were excluded (failure to wear [n = 8] and incomplete data [n = 10]). The accelerometer and pedometer correlated significantly on estimation of daily steps (ρ = 0.69, p < 0.01) and had good absolute agreement with low systematic error (mean difference: 505 ± 1498 steps/day). Accelerometer and IPAQ estimates of total, light and moderate Metabolic Equivalent minutes/day (MET min(-1) day(-1)) were not significantly correlated and there was poor absolute agreement. Relative to the accelerometer, the IPAQ under predicted daily total METs (105.76 ± 259.13 min(-1) day(-1)) and light METs (255.55 ± 128.41 min(-1) day(-1)) and over predicted moderate METs (-112.25 ± 166.41 min(-1) day(-1)). CONCLUSION: Compared with the accelerometer, the pedometer appears to provide a reliable estimate of physical activity in pregnancy, whereas the subjective IPAQ measure performed less accurately in this setting. Future research measuring activity in pregnancy should optimally encompass objective measures of physical activity. TRIAL REGISTRATION: Australian New Zealand Clinical Trial Registry Number: ACTRN12608000233325. Registered 7/5/2008.
  • Item
    Thumbnail Image
    3D Cadastre in Victoria Australia : Converting building plans of subdivision
    Aien, A ; Rajabifard, A ; Kalantari, M ; Williamson, I ; Shojaei, D (Geomares Publishing, 2011-08-01)
    Three-dimensional (3DD) land development is common, especially in urban areas. Management of 3D land rights, restrictions and responsibilities (3D RRRs) is one of the most important challenges in current land-administration systems, most of which are equipped with cadastres able only to maintain information in a 2D spatial information environment.
  • Item
    Thumbnail Image
    A mathematical model for targeting chemicals to tissues by exploiting complex degradation
    Gardiner, BS ; Zhang, L ; Smith, DW ; Pivonka, P ; Grodzinsky, AJ (BIOMED CENTRAL LTD, 2011-09-22)
    BACKGROUND: In many biological and therapeutic contexts, it is highly desirable to target a chemical specifically to a particular tissue where it exerts its biological effect. In this paper, we present a simple, generic, mathematical model that elucidates a general method for targeting a chemical to particular tissues. The model consists of coupled reaction-diffusion equations to describe the evolution within the tissue of the concentrations of three chemical species: a (concentration of free chemical), b (binding protein) and their complex, c (chemical bound to binding protein). We assume that all species are free to diffuse, and that a and b undergo a reversible reaction to form c. In addition, the complex, c, can be broken down by a process (e.g. an enzyme in the tissue) that results in the release of the chemical, a, which is then free to exert its biological action. RESULTS: For simplicity, we consider a one-dimensional geometry. In the special case where the rate of complex formation is small (compared to the diffusion timescale of the species within the tissue) the system can be solved analytically. This analytic solution allows us to show how the concentration of free chemical, a, in the tissue can be increased over the concentration of free chemical at the tissue boundary. We show that, under certain conditions, the maximum concentration of a can occur at the centre of the tissue, and give an upper bound on this maximum level. Numerical simulations are then used to determine how the behaviour of the system changes when the assumption of negligible complex formation rate is relaxed. CONCLUSIONS: We have shown, using our mathematical model, how complex degradation can potentially be exploited to target a chemical to a particular tissue, and how the level of the active chemical depends on factors such as the diffusion coefficients and degradation/production rates of each species. The biological significance of these results in terms of potential applications in cartilage tissue engineering and chemotherapy is discussed. In particular, we believe these results may be of use in determining the most promising prodrug candidates.
  • Item
    No Preview Available
    Trees provide energy saving benefits to adjacent buildings for a small water cost
    Livesley, SJ ; Aye, L ; Hes, D ; DAWKINS, A ; LHENDUP, T ; CAFFIN, M ; Williams, NS (Australian Sustainable Cities and Regions Network, 2011)
  • Item
    Thumbnail Image
    Template schools: Measuring indoor environmental quality
    Crawford, RH ; Jensen, CA ; Chan, TK ; Hes, D ; Aye, L (The University of Sydney, 2011)
  • Item
    Thumbnail Image
    A modelling method to assess the effect of tree shading for building performance simulation
    Hes, D ; Dawkins, A ; Jensen, CA ; Aye, L (International Building Performance Simulation Association, 2011)
    Increasing urban tree numbers is a simple but effective means to provide climate change adaptation to the urban environment by reducing the thermal load on buildings. To better communicate and value the importance of urban trees it is necessary to quantify these benefits and to understand the properties and processes that influence the magnitude of these benefits. For this we need verified and effective ways of modelling the trees in modelling software. This paper presents the results and problems encountered when trying to model trees effectively. The aim is to present our approach which was to treat the shade as a shading co-efficient on the wall. This allows for the consideration of the benefits of deciduous versus evergreen species. A modelling method to assess the effect of tree shading was developed and presented in this paper.