Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 45
  • Item
    No Preview Available
    Managing underground legal boundaries in 3D-extending the CityGML standard
    Saeidian, B ; Rajabifard, A ; Atazadeh, B ; Kalantari, M (KEAI PUBLISHING LTD, 2024-02)
  • Item
    No Preview Available
    A semantic 3D city model for underground land administration: Development and implementation of an ADE for CityGML 3.0
    Saeidian, B ; Rajabifard, A ; Atazadeh, B ; Kalantari, M (PERGAMON-ELSEVIER SCIENCE LTD, 2023-10)
  • Item
    No Preview Available
    Managing underground legal boundaries in 3D - Extending the CityGML standard
    Saeidian, B ; Rajabifard, A ; Atazadeh, B ; Kalantari, M (Elsevier BV, 2023-08)
    Legal boundaries are used for delineating the spatial extent of ownership property’s spaces. In underground environments, these boundaries are defined by referencing physical objects, surveying measurements, or projections. However, there is a gap in connecting and managing these boundaries and underground legal spaces, due to a lack of data model. A 3D data model supporting underground land administration (ULA) should define and model these boundaries and the relationships between them and underground ownership spaces. Prominent 3D data models can be enriched to model underground legal boundaries. This research aims to propose a new taxonomy of underground legal boundaries and model them by extending CityGML, which is a widely used 3D data model in the geospatial science domain. We developed, implemented, and tested the model for different types of underground legal boundaries. The implemented prototype showcased the potential benefits of CityGML for managing underground legal boundaries in 3D. The proposed 3D underground model can be used to address current challenges associated with communicating and managing legal boundaries in underground environments. While this data model was specifically developed for Victoria, Australia, the proposed model and approach can be used and replicated in other jurisdictions by adjusting the data requirements for underground legal boundaries.
  • Item
    Thumbnail Image
    Modelling underground cadastral survey data in CityGML
    Saeidian, B ; Rajabifard, A ; Atazadeh, B ; Kalantari, M (Wiley, 2023)
    In underground environments, survey elements such as survey points and observations provide the information required to define legal boundaries. These elements are also used to connect underground legal spaces to a geodetic survey network. Due to the issues of current 2D approaches for managing underground cadastral data, prominent 3D data models have been extended to support underground land administration. However, previous studies mostly focused on defining underground legal spaces and boundaries, with less emphasis on survey elements. This research aims to extend CityGML to support underground cadastral survey data. The proposed extension is based on the survey elements elicited from underground cadastral plans, which is then implemented for an underground case study area in Melbourne, Australia. This extension integrates underground survey data with legal and physical data in a 3D digital environment and provides an improved representation of survey elements, facilitating the management and communication of underground cadastral survey data.
  • Item
    No Preview Available
    EXTENDING CITYGML 3.0 TO SUPPORT 3D UNDERGROUND LAND ADMINISTRATION
    Saeidian, B ; Rajabifard, A ; Atazadeh, B ; Kalantari, M ; Aleksandrov, M ; Barton, J ; Zlatanova, S (COPERNICUS GESELLSCHAFT MBH, 2022)
    Abstract. Rapid development of underground space necessitates the efficient management of underground areas. Data modelling plays an underpinning role in integrating and managing underground physical and legal data. The physical data refers to semantic and spatial data of underground assets such as utilities, tunnels, and basements, while the legal data comprises the ownership information and the extent of underground legal spaces and the semantic and spatial relationships between legal spaces. Current Underground Land Administration (ULA) practices mainly focus on representing only either legal spaces or the physical reality of subsurface objects using fragmented and isolated 2D drawings, leading to ineffective ULA. A complete and accurate 3D representation of underground legal spaces integrated with the 3D model of their physical counterparts can support different use cases of ULA beyond underground land registration, such as planning, design and construction of underground assets (e.g. tunnels and train stations), utility management and excavation. CityGML is a prominent semantic data model to represent 3D urban objects at a city scale, making it a good choice for underground because underground assets such as tunnels and utilities are often modelled at city scales. However, CityGML, in its current version, does not support legal information. This research aims to develop an Application Domain Extension (ADE) for CityGML to support 3D ULA based on the requirements defined in the Victorian state of Australia. These requirements include primary underground parcels and secondary underground interests. This work extends CityGML 3.0, which is the new version of this model. In CityGML 3.0, UML conceptual models as platform-independent models are suggested to express ADEs. Thus, the ADE proposed in this study will be based on UML. The findings of this study show that extending CityGML to support legal information can be a viable solution to meet the requirements of a 3D integrated model for ULA. The CityGML ADE proposed in this study can potentially provide a new solution for 3D digital management of underground ownership rights in Victoria, and it can be used to implement an integrated 3D digital data environment for ULA.
  • Item
    No Preview Available
    Developing an integrated approach to validate 3D ownership spaces in complex multistorey buildings
    Asghari, A ; Kalantari, M ; Rajabifard, A ; Shin, J (TAYLOR & FRANCIS LTD, 2023-01-01)
    3D geospatial data are being progressively adopted in urban land administration to represent 3D ownership rights in multistorey buildings. The integrity of urban land administration highly depends on the validity and quality of cadastral data. However, a large portion of research deals with the conceptual principles of internal and external spatial consistencies of 3D cadastral data. This article integrates the principles in practice and develops methods to check the validity of 3D parcels and their relationships in complex ownership settings. To evaluate the methods, this research adopts a case study using an 18-floor multistorey building with 248 lots and three types of common properties. The ownership rights of this building are delineated as polyhedral surface models, including non-2-manifold and non-simple polyhedra, and evaluated by implemented principles. The results reveal that the integrated methods can identify 3D cadastral errors, overlaps and gaps. The developed integrated approach can significantly advance urban land administration, as it facilitates complex 3D cadastral data validation.
  • Item
    No Preview Available
    A BIM-based framework for property dispute minimization - A case study for Victoria, Australia
    Shin, J ; Rajabifard, A ; Kalantari, M ; Atazadeh, B (ELSEVIER SCI LTD, 2022-08)
  • Item
    Thumbnail Image
    Data lifecycle of underground land administration: a systematic literature review
    Saeidian, B ; Rajabifard, A ; Atazadeh, B ; Kalantari, M (Taylor and Francis Group, 2022)
    Underground Land Administration (ULA) plays a paramount role in recording, registering and managing underground ownership boundaries and rights, restrictions and responsibilities associated with underground assets. 3D digital models provide a great potential to modernise ULA as it is evident in research studies. Several steps, from data acquisition to the use of underground land data have been considered by studies to support 3D ULA. These steps form the ULA data lifecycle. This paper provides an overview of methods, techniques and tools used in different steps of the ULA data lifecycle and identifies research gaps, challenges, and potential opportunities for future studies.
  • Item
    Thumbnail Image
    Building Information Modeling (BIM) for Construction and Demolition Waste Management in Australia: A Research Agenda
    Han, D ; Kalantari, M ; Rajabifard, A (MDPI, 2021-12)
    Construction and demolition waste (C&DW) contribute to approximately 30% of the total waste generation worldwide, by which heterogeneous ecological impacts, such as resource depletion, global warming, and land degradation, are engendered. Despite ongoing research efforts to minimize construction waste via the Building Information Modeling (BIM)-aided design, there is a paucity of research on integrating BIM in demolition waste management (DWM). This study investigates prominent barriers and future research directions toward the wider adoption of BIM in C&DWM by conducting a systematic literature review. First, this study identifies the barriers that hinder the implementation of C&DWM in Australia; then, it explores the benefits and challenges of leveraging BIM applications for C&DWM. The findings suggest that, for existing buildings without up-to-date design drawings, it is imperative to improve the accuracy of data capturing and object recognition techniques to overcome the bottlenecks of BIM-DWM integration. Moreover, the development of regional-oriented material banks and their harmonization with life cycle assessment databases can extend the potential of BIM-based sustainability analysis, making it applicable to the DWM domain. This study proposes a research agenda on tackling these challenges to realize BIM’s full potential in facilitating DWM.
  • Item
    Thumbnail Image
    Formative and Summative Validation of Building Information Model-Based Cadastral Data
    Asghari, A ; Kalantari, M ; Rajabifard, A (MDPI, 2021-08)
    Among 3D models, Building Information Models (BIM) can potentially support the integrated management of buildings’ physical and legal aspects in cadastres. However, there is not a systematic approach to author the cadastral information into the BIM models. Moreover, the common approaches for data validation only check the final cadastral output, and they ignore the data generation steps as potential avenues for validation. Therefore, this study aims to develop the criteria and standards to check the spatial consistency and integrity of BIM-based cadastral data in the process of generating the data. The paper utilises a case study approach as its methodology to investigate the requirements of generating a BIM-based cadastral model and identify the issues within the process. The results include a formative assessment (i.e., multistep validation approach during the data generation) alongside a summative assessment (i.e., one-step validation approach at the end of data generation). This study found the summative assessment alone insufficient for 3D cadastral data validation. The paper concludes that a formative and summative assessment together can improve the validity of the data. The results will potentially bring more efficiency to modern land administration processes by avoiding the accumulation of errors in 3D cadastral data generation.