Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 35
  • Item
    No Preview Available
    Performance of a wheat yield prediction model and factors influencing the performance: A review and meta-analysis
    Hao, S ; Ryu, D ; Western, A ; Perry, E ; Bogena, H ; Franssen, HJH (ELSEVIER SCI LTD, 2021-12)
    CONTEXT: Process-based crop models provide ways to predict crop growth, evaluate environmental impacts on crops, test various crop management options, and guide crop breeding. They can be used to explore options for mitigating climate change impacts when combined with climate projections and explore mitigation of environmental impacts of production. The Agricultural Production Systems SIMulator (APSIM) is a widely adopted crop model that offers modules for simulation of various crops, soil processes, climate, and grazing within a modelling system that enables robust addition of new components. OBJECTIVE: This study uses APSIM Classic-Wheat as an example to examine yield prediction accuracy of biophysically based crop yield modelling and to analyse the factors influencing the model performance. METHODS: We analysed yield prediction results of APSIM Classic-Wheat from 76 published studies across thirteen countries on four continents. In addition, a meta-database of modelled and observed yields from 30 studies was established and used to identify factors that influence yield prediction uncertainty. RESULTS AND CONCLUSIONS: Our analysis indicates that, with site-specific calibration, APSIM predicts yield with a root mean squared error (RMSE) smaller than 1 t/ha and a normalised RMSE (NRMSE) of about 28%, across a wide range of environmental conditions for independent evaluation periods. The results show increasing errors in yield with limited modelling information and adverse environmental conditions. Using soil hydraulic parameters derived from site-specific measurements and/or tuning cultivar parameters improves yield prediction accuracy: RMSE decreases from 1.25 t/ha to 0.64 t/ha and NRMSE from 32% to 14%. Lower model accuracy was found where APSIM overestimates yield under high water deficit condition and when it underestimates yield under nitrogen limitation. APSIM severely over-predicts yield when some abiotic stresses such as heatwaves and frost affect the crop growth. SIGNIFICANCE: This paper uses APSIM-Wheat as an example to provide perspectives on crop model yield prediction performance under different conditions covering a wide spectrum of management practices, and environments. The findings deepen the understanding of model uncertainty associated with different calibration processes or under various stressed conditions. The results also indicate the need to improve the model's predictive skill by filling functional gaps in the wheat simulations and by assimilating external observations (e.g., biomass information estimated by remote sensing) to adjust the model simulation for stressed crops.
  • Item
    Thumbnail Image
    Modelling electrical conductivity variation using a travel time distribution approach in the Duck River catchment, Australia
    Riazi, Z ; Western, AW ; Bende-Michl, U (WILEY, 2022-11)
    Abstract Solute dynamics depend strongly on hydrologic flow paths and transit times within catchments. In this paper, we use a travel time tracking method to simulate stream salinity (as measured by electrical conductivity) in the Duck River catchment, NW Tasmania, Australia. The study couples storage selection function transit time modelling with two alternate approaches to model electrical conductivity (EC). The first approach assumes the catchment has a cyclic salt balance (i.e., rainfall source, stream flow sink) that is in dynamic equilibrium and evapoconcentration of salt is the only process changing concentration. The second approach assumes that the salinity of water in catchment storages is a function of water age in those stores, without explicitly simulating salt mass balance processes. The paper compares these alternate approaches in terms of EC simulation performance, simulated stream water age distributions, and simulated storage age distributions. A split sample calibration‐validation analysis was conducted using the 2008 and 2009 water years. Both EC simulation approaches reproduced stream EC variations very well under both calibration and validation. The simulations using the age‐related EC simulation approach produced less biased results and, consequently, higher model coefficient of efficiency for validation periods. This approach also produced more consistent model parameter estimates between periods. There were systematic differences in the resultant age distributions between models, particularly for the solute balance‐based simulations where parameters (catchment storage size) changed more between the two calibration periods. The effect of time varying versus static storage selection functions were compared, with clear evidence that time varying storage selection functions with parameters linked to catchment conditions (flow) are essential for adequate simulation of EC dynamics during flow events.
  • Item
    Thumbnail Image
    Explaining changes in rainfall-runoff relationships during and after Australia's Millennium Drought: a community perspective
    Fowler, K ; Peel, M ; Saft, M ; Peterson, TJ ; Western, A ; Band, L ; Petheram, C ; Dharmadi, S ; Tan, KS ; Zhang, L ; Lane, P ; Kiem, A ; Marshall, L ; Griebel, A ; Medlyn, BE ; Ryu, D ; Bonotto, G ; Wasko, C ; Ukkola, A ; Stephens, C ; Frost, A ; Weligamage, HG ; Saco, P ; Zheng, H ; Chiew, F ; Daly, E ; Walker, G ; Vervoort, RW ; Hughes, J ; Trotter, L ; Neal, B ; Cartwright, I ; Nathan, R (COPERNICUS GESELLSCHAFT MBH, 2022-12-06)
    Abstract. The Millennium Drought lasted more than a decade and is notable for causing persistent shifts in the relationship between rainfall and runoff in many southeastern Australian catchments. Research to date has successfully characterised where and when shifts occurred and explored relationships with potential drivers, but a convincing physical explanation for observed changes in catchment behaviour is still lacking. Originating from a large multi-disciplinary workshop, this paper presents and evaluates a range of hypothesised process explanations of flow response to the Millennium Drought. The hypotheses consider climatic forcing, vegetation, soil moisture dynamics, groundwater, and anthropogenic influence. The hypotheses are assessed against evidence both temporally (e.g. why was the Millennium Drought different to previous droughts?) and spatially (e.g. why did rainfall–runoff relationships shift in some catchments but not in others?). Thus, the strength of this work is a large-scale assessment of hydrologic changes and potential drivers. Of 24 hypotheses, 3 are considered plausible, 10 are considered inconsistent with evidence, and 11 are in a category in between, whereby they are plausible yet with reservations (e.g. applicable in some catchments but not others). The results point to the unprecedented length of the drought as the primary climatic driver, paired with interrelated groundwater processes, including declines in groundwater storage, altered recharge associated with vadose zone expansion, and reduced connection between subsurface and surface water processes. Other causes include increased evaporative demand and harvesting of runoff by small private dams. Finally, we discuss the need for long-term field monitoring, particularly targeting internal catchment processes and subsurface dynamics. We recommend continued investment in the understanding of hydrological shifts, particularly given their relevance to water planning under climate variability and change.
  • Item
    Thumbnail Image
    Comparison of KOMPSAT-5 and Sentinel-1 Radar Data for Soil Moisture Estimations Using a New Semi-Empirical Model
    Tao, L ; Ryu, D ; Western, A ; Lee, S-G (MDPI, 2022-08)
    X-band KOMPSAT-5 provides a good perspective for soil moisture retrieval at high-spatial resolution over arid and semi-arid areas. In this paper, an intercomparison of KOMPSAT-5 and C-band Sentinel-1 radar data in soil moisture retrieval was conducted over agricultural fields in Wimmera, Victoria, Australia. Optical images from Sentinel-2 were also used to calculate the scattering contribution of vegetation. This study employed a new semi-empirical vegetation scattering model with a linear association of soil moisture with observed backscatter coefficient and vegetation indices. The Combined Vegetation Index (CVI) was proposed and first used to parameterize vegetation water content. As a result, the vegetation scattering model was developed to monitor soil moisture based on remotely sensed data and ground measurements. Application of the algorithm over dryland wheat field sites demonstrated that the estimated satellite-based soil moisture contents have good linear relationships with the ground measurements. The correlation coefficients (R) are 0.862 and 0.616, and the root mean square errors (RMSEs) have the values of 0.020 cm3/cm3 and 0.032 cm3/cm3 at X- and C-bands, respectively. Furthermore, the validation results also indicated that X-band provided higher consistent accuracy for soil moisture inversion than C-band. These results showed significant promise in retrieving soil moisture using KOMPSAT-5 and Sentinel-1 remotely sensed data at high-spatial resolution over agricultural fields, with subsequent uses for crop growth and yield estimation.
  • Item
    Thumbnail Image
    Identifying Causal Interactions Between Groundwater and Streamflow Using Convergent Cross-Mapping
    Bonotto, G ; Peterson, TJ ; Fowler, K ; Western, AW (AMER GEOPHYSICAL UNION, 2022-08)
    Abstract Groundwater (GW) is commonly conceptualized as causally linked to streamflow (SF). However, confirming where and how it occurs is challenging given the expense of experimental field monitoring. Therefore, hydrological modeling and water management often rely on expert knowledge to draw causality between SF and GW. This paper investigates the potential of convergent cross‐mapping (CCM) to identify causal interactions between SF and GW head. Widely used in ecology, CCM is a nonparametric method to identify causality in nonlinear dynamic systems. To apply CCM between variables the only required inputs are time‐series data (stream gauge and bore), so it may be an attractive alternative or complement to expensive field‐based studies of causality. Three upland catchments across different hydrogeologic settings and climatic conditions in Victoria, Australia, are adopted as case studies. The outputs of the method seem to largely agree with a priori perceptual understanding of the study areas and offered additional insights about hydrological processes. For instance, it suggested weaker SF‐GW interactions during and after the Millennium Drought than in the previous wet periods. However, we show that CCM limitations around seasonality, data sampling frequency, and long‐term trends could impact the variability and significance of causal links. Hence, care must be taken while physically interpreting the causal links suggested by CCM. Overall, this study shows that CCM can provide valuable causal information from common hydrological time‐series, which is relevant to a wide range of applications, but it should be used and interpreted with care and future research is needed.
  • Item
    Thumbnail Image
    A Bayesian approach to understanding the key factors influencing temporal variability in stream water quality: a case study in the Great Barrier Reef catchments
    Liu, S ; Ryu, D ; Webb, JA ; Lintern, A ; Guo, D ; Waters, D ; Western, AW ( 2021-01-12)
    Abstract. Stream water quality is highly variable both across space and time. Water quality monitoring programs have collected a large amount of data that provide a good basis to investigate the key drivers of spatial and temporal variability. Event-based water quality monitoring data in the Great Barrier Reef catchments in northern Australia provides an opportunity to further our understanding of water quality dynamics in sub-tropical and tropical regions. This study investigated nine water quality constituents, including sediments, nutrients and salinity, with the aim of: 1) identifying the influential environmental drivers of temporal variation in flow event concentrations; and 2) developing a modelling framework to predict the temporal variation in water quality at multiple sites simultaneously. This study used a hierarchical Bayesian model averaging framework to explore the relationship between event concentration and catchment-scale environmental variables (e.g., runoff, rainfall and groundcover conditions). Key factors affecting the temporal changes in water quality varied among constituent concentrations, as well as between catchments. Catchment rainfall and runoff affected in-stream particulate constituents, while catchment wetness and vegetation cover had more impact on dissolved nutrient concentration and salinity. In addition, in large dry catchments, antecedent catchment soil moisture and vegetation had a large influence on dissolved nutrients, which highlights the important effect of catchment hydrological connectivity on pollutant mobilisation and delivery.
  • Item
    Thumbnail Image
    Explaining changes in rainfall-runoff relationships during and after Australia's Millennium Drought: a community perspective
    Fowler, K ; Peel, M ; Saft, M ; Peterson, T ; Western, A ; Band, L ; Petheram, C ; Dharmadi, S ; Tan, KS ; Zhang, L ; Lane, P ; Kiem, A ; Marshall, L ; Griebel, A ; Medlyn, B ; Ryu, D ; Bonotto, G ; Wasko, C ; Ukkola, A ; Stephens, C ; Frost, A ; Weligamage, H ; Saco, P ; Zheng, H ; Chiew, F ; Daly, E ; Walker, G ; Vervoort, RW ; Hughes, J ; Trotter, L ; Neal, B ; Cartwright, I ; Nathan, R ( 2022-04-20)
    The Millennium Drought lasted more than a decade, and is notable for causing persistent shifts in the relationship between rainfall and runoff in many south-east Australian catchments. Research to date has successfully characterised where and when shifts occurred and explored relationships with potential drivers, but a convincing physical explanation for observed changes in catchment behaviour is still lacking. Originating from a large multi-disciplinary workshop, this paper presents a range of possible process explanations of flow response, and then evaluates these hypotheses against available evidence. The hypotheses consider climatic forcing, vegetation, soil moisture dynamics, groundwater, and anthropogenic influence. The hypotheses are assessed against evidence both temporally (eg. why was the Millennium Drought different to previous droughts?) and spatially (eg. why did rainfall-runoff relationships shift in some catchments but not in others?). The results point to the unprecedented length of the drought as the primary climatic driver, paired with interrelated groundwater processes, including: declines in groundwater storage, reduced recharge associated with vadose zone expansion, and reduced connection between subsurface and surface water processes. Other causes include increased evaporative demand and interception of runoff by small private dams. Finally, we discuss the need for long-term field monitoring, particularly targeting internal catchment processes and subsurface dynamics. We recommend continued investment in understanding of hydrological shifts, particularly given their relevance to water planning under climate variability and change.
  • Item
    Thumbnail Image
    A multi-model approach to assessing the impacts of catchment characteristics on spatial water quality in the Great Barrier Reef catchments
    Liu, S ; Ryu, D ; Webb, JA ; Lintern, A ; Guo, D ; Waters, D ; Western, AW (ELSEVIER SCI LTD, 2021-11-01)
    Water quality monitoring programs often collect large amounts of data with limited attention given to the assessment of the dominant drivers of spatial and temporal water quality variations at the catchment scale. This study uses a multi-model approach: a) to identify the influential catchment characteristics affecting spatial variability in water quality; and b) to predict spatial variability in water quality more reliably and robustly. Tropical catchments in the Great Barrier Reef (GBR) area, Australia, were used as a case study. We developed statistical models using 58 catchment characteristics to predict the spatial variability in water quality in 32 GBR catchments. An exhaustive search method coupled with multi-model inference approaches were used to identify important catchment characteristics and predict the spatial variation in water quality across catchments. Bootstrapping and cross-validation approaches were used to assess the uncertainty in identified important factors and robustness of multi-model structure, respectively. The results indicate that water quality variables were generally most influenced by the natural characteristics of catchments (e.g., soil type and annual rainfall), while anthropogenic characteristics (i.e., land use) also showed significant influence on dissolved nutrient species (e.g., NOX, NH4 and FRP). The multi-model structures developed in this work were able to predict average event-mean concentration well, with Nash-Sutcliffe coefficient ranging from 0.68 to 0.96. This work provides data-driven evidence for catchment managers, which can help them develop effective water quality management strategies.
  • Item
    Thumbnail Image
    Characterizing dominant hydrological processes under uncertainty: evaluating the interplay between model structure, parameter sampling, error metrics, and data information content
    Khatami, S ; Peel, M ; Peterson, T ; Western, A ( 2020-03-23)
    <p>Hydrological models are conventionally evaluated in terms of their response surface or likelihood surface constructed with the model parameter space. To evaluate models as hypotheses, we developed the method of <em>Flux Mapping</em> to construct a hypothesis space based on model process representation. Here we defined the hypothesis space based on dominant runoff generating mechanisms, and acceptable model runs are defined as total simulated flow with similar (and minimal) model error simulated by distinct combinations of runoff components. We demonstrate that the hypothesis space in each modeling case is the result of interplay between the factors of model structure, parameter sampling, choice of error metric, and data information content. The aim of this study is to disentangle the role of each factor in this interplay. We used two model structures (SACRAMENTO and SIMHYD), two parameter sampling approaches (small samples based on guided-search and large samples based on Latin Hypercube Sampling), three widely used error metrics (NSE, KGE, and WIA — Willmott’s Index of Agreement), and hydrological data from a range of Australian catchments. First, we characterized how the three error metrics behave under different error regimes independent of any modeling. We then conducted a series of controlled experiments, i.e. a type of one-factor-at-a-time sensitivity analysis, to unpack the role of each factor in runoff simulation. We show that KGE is a more reliable error metric compared to NSE and WIA for model evaluation. We also argue that robust error metrics and sufficient parameter sampling are necessary conditions for evaluating models as hypotheses under uncertainty. We particularly argue that sampling sufficiency, regardless of the sampling strategy, should be further evaluated based on its interaction with other modeling factors determining the model response. We conclude that the interplay of these modeling factors is complex and unique to each modeling case, and hence generalizing model-based inferences should be done with caution particularly in characterizing hydrological processes in large-sample hydrology.</p>
  • Item
    No Preview Available
    Cover Image, Volume 8, Issue 2
    Kattel, G ; Reeves, J ; Western, A ; Zhang, W ; Jing, W ; McGowan, S ; Cuo, L ; Scales, P ; Dowling, K ; He, Q ; Wang, L ; Capon, S ; Pan, Z ; Cui, J ; Zhang, L ; Xiao, L ; Liu, C ; Zhang, K ; Gao, C ; Tian, Z ; Liu, Y (Wiley, 2021-03)
    Abstract The cover image is based on the Focus Article Healthy waterways and ecologically sustainable cities in Beijing‐Tianjin‐Hebei urban agglomeration (northern China): Challenges and future directions by Giri Kattel et al., https://doi.org/10.1002/wat2.1500. image