Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    Whole-life baseline carbon assessment of residential building stock – A Victorian case study
    Chan, M ; Foliente, G ; Seo, S ; Hui, K ; Aye, L (Australian Life Cycle Assessment Society (ALCAS), 2023-07-19)
    Assessing residential building decarbonisation opportunities requires a whole-life approach, given the increasing share of embodied carbon as housing becomes more energy efficient. Since most of the projected housing stock would consist of existing buildings, emissions from renovation should also be included in determining both embodied and operational carbon in the residential building sector. A bottom-up typology framework was developed to estimate carbon emissions for existing and new housing up to 2050, scalable from local government area (LGA) to state-level jurisdiction which allows for granularity in testing scenarios for the future. Housing typologies were developed for existing, new, and renovation housing stock based on census data. Operating carbon was obtained using building energy simulation while embodied carbon data was accounted from localised life cycle construction datasets. The state of Victoria along with its corresponding LGAs was used as a case study for said framework. Heating load comprised most of the operating energy demand for most typologies while external walls and floors contributed significant embodied carbon for new residential buildings, particularly for detached houses. For Victoria, detached houses built prior to 1991 contributed most of the operational carbon, however with high construction rates set for most LGAs, new housing may contribute more GHG emissions in 2050. Brick veneer housing yielded more embodied carbon from the external wall compared to timber homes while concrete slabs used in floors also incurred a large amount of embodied carbon for the residential building stock. Renovating existing housing has the potential to reduce operating energy demand while emitting less embodied carbon, thus policies on this should be considered in developing decarbonisation pathways. Using the bottom-up typology whole-life carbon framework offers granularity in analysing individual-level carbon impact which can be expanded to LGA and state level.
  • Item
    Thumbnail Image
    A simplified sustainable circular economy evaluation for end-of-life photovoltaic
    Suyanto, ER ; Sofi, M ; Lumantarna, E ; Aye, L (Australian Life Cycle Assessment Society (ALCAS), 2023-07-19)
    Sustainability and circular economy in the photovoltaic (PV) industry has been gaining increasing traction. Yet, it is still in its infancy. Sustainability is not synonymous to circularity. The correlations between the two paradigms vary case-by-case. PV panel waste has become one of the fastest growing electronic waste. The potential economic and environmental benefits through recycling and other recircularity initatives have been confirmed. However, there is still an urgency to delineate End-of-Life (EoL) PV management practice that is both sustainable and circular. Private PV stakeholders play a prominent role in achieving best practice. However, the exhaustive nature of life cycle impact studies and their data gathering may deter PV producers and recyclers to consider sustainability and circularity performance in their decision-making. This work aims to propose a framework to evaluate sustainability and circular economy performance of discarded PV processing in an integrated manner for private sector users. Sustainability will be assessed through life cycle assessment for environmental impacts, life cycle cost for economic impacts, and industry stakeholder survey to compensate for the lack of social impacts data. Circularity will be evaluated using selected sets of existing product-level circularity indicators. The two paradigms will be reconciled through a joint analysis via multi-criteria decision making.
  • Item
    No Preview Available
    Experimental evaluation of PCM embedded radiant chilled ceiling for efficient space cooling
    Mousavi, S ; Rismanchi, B ; Brey, S ; Aye, L (Department of the Built Environment, 2023)
    Because of climate change, together with rapid urbanisation and continuous population growth, the global demand for space cooling is increasing dramatically. Under a business-as-usual trajectory, there will be a more than threefold rise in the number of in-use air conditioners worldwide by 2050. A radical shift to innovative space cooling technologies is therefore essential, ones that can sustainably meet the growing requirements. Phase change material embedded radiant chilled ceiling, called PCM-RCC, offers an emerging alternative for more sustainable space cooling provision. This system provides a range of benefits to endusers, in terms of efficiency and indoor environmental quality, together with demand-side flexibility. PCM-RCC, however, is still under development, and further research is needed to realise its full capabilities. The present work experimentally analyses the thermal-energy performance of a PCM-RCC system using a full-scale test cabin equipped with PCM ceiling panels. Here, the transient thermal behaviour of the panels besides the cooling energy delivered in charging-discharging cycles are examined. Additionally, the indoor thermal comfort and peak energy demand reduction enabled by the present PCM-RCC are discussed. Based on the results, typically 4–5 hours of chilled water circulation overnight could sufficiently be able to fully recharge the panels in the morning. Over 80% of the occupancy time was found within Class B thermal comfort defined in ISO 7730. About 70% of the system’s daily electricity usage time was during off-peak hours. The significance of implementing optimal predictive operating schedules was also highlighted to fully utilise PCM-RCC’s potentials.
  • Item
    No Preview Available
    Exploring policy mixes for low-carbon and just energy transitions systems: An Australian case
    Rojas Arevalo, A ; de Haan, F ; Candy, S ; Foliente, G ; Aye, L (DUMU, 2022-11-09)
  • Item
    No Preview Available
    A multi-layered energy resilience framework and metrics for energy master planning of communities: A university campus case study
    Charani Shandiz, S ; Rismanchi, B ; Foliente, G ; Aye, L (Society of Risk Analysis, 2021-12-05)
  • Item
    No Preview Available
  • Item
    Thumbnail Image
    An innovative cost-effective floating solar still with integrated condensation coils
    Mohsenzadeh, M ; Aye, L ; Christopher, P (Australian PV Institute, 2021-12-16)
  • Item
    Thumbnail Image
    An update on Activity C1 Design Tools and Models, Task 65 Solar Cooling Sunbelt Regions
    Aye, L ; Daborer-Prado, N ; Neyer, D ; Jakob, U (Australian PV Institute, 2021-12-16)
  • Item
    Thumbnail Image
    Effects of substrate depth and native plants on green roof thermal performance in South-East Australia
    Pianella, A ; Aye, L ; Chen, Z ; Williams, N (IOP Publishing, 2020-11-20)
    Three experimental green roofs in Melbourne with depth of 100, 150 and 300 mm have been assessed to quantify their thermal performance. To evaluate the benefit of substrate depth, temperature was recorded every 50 mm along a vertical profile. Green roofs consisted of scoria substrate and a mix of three species of plants: Lomandra longifolia, Dianella dmixta and Stypandra glauca. Statistical analyses applying the hierarchical partitioning technique showed that solar radiation is the main driver affecting the green roof surface temperature, air temperature has strong correlations with the variations of the temperatures recorded below the surface, while moisture content has the least influence. Temperature profiles of the green roof show that the first 50 mm do reduce the heat flowing through the green roof substrate regardless the total green roof substrate depth. Differences in thermal performance arise at deeper points, where thicker green roofs are able to delay the change of substrate temperatures. Similar effects were found for the heat fluxes measured at the interface between the green roof and building roof. These results confirmed that green roofs may be used as a sustainable passive technology to reduce building energy consumptions for South-East Australia climate.