Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 74
  • Item
    No Preview Available
    Nonlinear Wind-Induced Vibration Behaviors of Multi-tower Suspension Bridges Under Strong Wind Conditions
    Zhou, R ; Ge, YJ ; Yang, Y ; Du, YD ; Zhang, LH (Springer Nature Singapore, 2023-01-01)
    Abstract The aerodynamic characteristics of a multispan suspension bridge differ from those of a two-span suspension bridge. In this study we investigated the nonlinear aerodynamic characteristics of the Maanshan Bridge under nonstationary flow using combination quasi-3D finite element (FE) bridge models of 2D nonlinear aerodynamic force models and 3D nonlinear FE bridge models. The developed model predictions were validated by wind tunnel tests involving a 2D sectional stiffness model and 3D full-bridge aeroelastic model. Results showed that the developed model could potentially describe the nonlinear and unsteady aerodynamic effects on the bridge. Furthermore, the flutter behavior of the Maanshan Bridge under uniform flow changed from the stable limit cycle of soft flutter to unstable limit cycle with the disconnection of two hangers at the 1/2L of the right main span, while the flutter behavior of the bridge under turbulence flow could be defined as the fracture failure of the hangers from the 1/2L of the left main span.
  • Item
    Thumbnail Image
    Thermal Transfer Effects of CRTS II Slab Track Under Various Meteorological Conditions
    Zhou, R ; Yuan, WH ; Du, YD ; Liu, HL ; Zhang, LH (Springer Nature Singapore, 2023-01-01)
    Abstract With the evolution of climate change, the thermal transfer effects of ballastless track in high-speed railways under complicated environmental conditions becomes increasingly important, governed by a number of meteorological factors, including solar radiation, ambient temperature, wind speed and direction, humidity, and many others (Matias SR, Ferreira PA, Constr Build Mater 322:126445, 2022).
  • Item
    Thumbnail Image
    Harmonic Vibration of Inclined Porous Nanocomposite Beams
    Chen, D ; Zhang, L ; Duan, W ; Zhang, L ; Shah, SP (Springer Nature, 2023-01-01)
    This work investigated the linear harmonic vibration responses of inclined beams featured by closed-cell porous geometries where the bulk matrix materials were reinforced by graphene platelets as nanofillers. Graded and uniform porosity distributions combined with different nanofiller dispersion patterns were applied in the establishment of the constitutive relations, in order to identify their effects on beam behavior under various harmonic loading conditions. The inclined beam model comprised of multiple layers and its displacement field was constructed using Timoshenko theory. Forced vibration analysis was conducted to predict the time histories of mid-span deflections, considering varying geometrical and material characterizations. The findings may provide insights into the development of advanced inclined nanocomposite structural components under periodic excitations.
  • Item
    Thumbnail Image
    Lean and Green: How the Synergy Can Promote Sustainable Construction
    Peiris, PA ; Herath, N ; NGO, T ; Duffield, CF ; Hui, KP ; Dissanayake, R ; Mendis, P ; Weerasekera, K ; De Silva, S ; Fernando, S ; Konthesingha, C ; Gajandayake, P (Springer Nature, 2023-08-01)
    Lean construction aims to improve efficiency through the reduction of wasteful activities. These waste reduction activities also indirectly improve the sustainability approach used by organizations. Our paper examines the definition of lean construction (LC), LC activities, and green construction as understood by academics through a focused literature review. It then examines these practices considering how these activities contribute towards enhancing the sustainability of the built environment and the organization. Our findings suggest that not all waste reduction activities have the same degree of effect on sustainability improvements. Some lean tools such as standardization and just-in-time (JIT) for production scheduling can have a better effect, especially, if the key performance indicators (KPI) specifically target sustainability indicators. “Lean and Green” is not a myth and is very much achievable in the construction industry with the current efforts towards industry 4.0/5.0. Combining these two concepts remains a challenge. This paper aims to learn from what we already know and suggests ways on how “Lean and Green” can be achieved in the future. The paper includes a discussion on leveraging lean and green concepts to achieve the sustainable development goals promoted by the United Nations.
  • Item
    No Preview Available
    Computational Modelling for Managing Pathways to Cartilage Failure.
    Miramini, S ; Smith, DW ; Gardiner, BS ; Zhang, L ; Connizzo, BK ; Han, L ; Sah, RL (Springer Cham, 2023)
    Over several decades the perception and therefore description of articular cartilage changed substantially. It has transitioned from being described as a relatively inert tissue with limited repair capacity, to a tissue undergoing continuous maintenance and even adaption, through a range of complex regulatory processes. Even from the narrower lens of biomechanics, the engagement with articular cartilage has changed from it being an interesting, slippery material found in the hostile mechanical environment between opposing long bones, to an intriguing example of mechanobiology in action. The progress revealing this complexity, where physics, chemistry, material science and biology are merging, has been described with increasingly sophisticated computational models. Here we describe how these computational models of cartilage as an integrated system can be combined with the approach of structural reliability analysis. That is, causal, deterministic models placed in the framework of the probabilistic approach of structural reliability analysis could be used to understand, predict, and mitigate the risk of cartilage failure or pathology. At the heart of this approach is seeing cartilage overuse and disease processes as a 'material failure', resulting in failure to perform its function, which is largely mechanical. One can then describe pathways to failure, for example, how homeostatic repair processes can be overwhelmed leading to a compromised tissue. To illustrate this 'pathways to failure' approach, we use the interplay between cartilage consolidation and lubrication to analyse the increase in expected wear rates associated with cartilage defects or meniscectomy.
  • Item
    No Preview Available
    Investigating the Effectiveness of Energy Tunnels in Cooling Underground Substations
    Bidarmaghz, A ; Makasis, N ; Fei, W ; Narsilio, GA (Springer International Publishing, 2023-01-01)
  • Item
    Thumbnail Image
    Multimodal relationships: shared and automated vehicles and high-capacity public transit
    Freemark, Y ; Nassir, N ; Zhao, J ; Ata, K ; Susan, S (The Institution of Engineering and Technology, 2021-12-01)
    Shared mobility is gaining increasing attention in private and public sectors. Serving as a source of information on how best to shape shared vehicle systems of the future, this book contributes knowledge on key facets of shared mobility.
  • Item
    No Preview Available
    Challenges in Transport Logistics for Modular Construction: A Case Study
    Peiris, PA ; Hui, K ; Ngo, T ; Duffield, CF ; Garcia, MG ; Dissanayake, R ; Mendis, P ; Weerasekera, K ; De Silva, S ; Fernando, S ; Konthesingha, C (Springer Nature, 2023-01-01)
    Construction logistics is one of the essential functions in the modular construction industry due to the high demand for on-time delivery of components. For modular component suppliers, there is minimal flexibility in delivery times as generally, the installation times of modular components are critical to the contractor’s construction programme. There are several studies conducted in recent years that articulate novel methodologies in construction logistics scheduling; however, the industry still faces challenges in streamlining the whole supply chain to better cater to potential uncertainties that impact construction logistics. This paper looks at a case study on a modular component supplier in Melbourne, with regarding to the challenges faced and how they have effectively overcome these challenges and provides a framework to mitigate construction logistics related discrepancies in the supply chain. The resilience of these methods in facing unforeseen events such as COVID-19 will also be discussed. The overarching objectives of this paper are to include: (1) bibliographic mapping of related publications; (2) identification of current methods, problems and technologies used in modular construction logistics; and (3) propose best practice guidelines that can be implemented to effectively cater to such uncertainties in construction logistics to minimise the impact on the supply chain. Further, incorporating lean principles for planning construction logistics and transport for the modular construction industry is also in discussion. Finally, the potential future research directions are highlighted to guide the researchers to pursue areas of much importance.
  • Item
    Thumbnail Image
    Internet of Things for Structural Health Monitoring
    SRIDHARA RAO, A ; Gubbi, J ; Ngo, T ; Mendis, P ; Palaniswami, M ; Epaarachchi, A ; Chanaka Kahandawa, G (CRC Press, 2016-05)
    The Internet revolution led to the interconnection between people at an unprecedented scale and pace. The ability of the sensor networks to send data over the Internet further enhanced the scope and usage of the sensor networks. The Internet uses unique address to identify the devices connected to the network. Structural Health Monitoring (SHM) implies monitoring of the state of the structures through sensor networks in an online mode and are pertinent to aircraft and buildings. SHM can be further divided into two categories: global health monitoring and local health monitoring. Continuous online SHM would be an ideal solution. SHM is performed by using acoustic sensors, ultrasonic sensors, strain gauges, optical fibers, and so on. Video cameras can also be used for SHM. SHM can be achieved in real-time and rich analytics. With the advent of smart sensors—sensors with programmable microprocessors, memory, and processing—has reduced load of central data processing, communication overhead while proving continuous SHM status.
  • Item
    Thumbnail Image
    Parking Occupancy Detection and Slot Delineation Using Deep Learning: A Tutorial
    Khoshelham, K ; Acharya, D ; Winter, S ; Goel, S (TU Wien Academic Press, 2021)
    This chapter describes a simple method for parking occupancy detection and an automatic parking slot delineation method using CCTV images. These methods will be presented in the form of MATLAB tutorials with code snippets to allow the interested reader to implement the method and obtain results on a sample dataset. The first tutorial will involve fine-tuning a pre-trained deep neural network for vehicle detection in a sequence of CCTV camera images to determine the occupancy of the parking spaces. In the second tutorial, we perform spatio-temporal analysis of the detections made by a state-of-the-art deep learning object detector (Faster-RCNN) for automatic parking slot delineation.