Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 44
  • Item
    Thumbnail Image
    Evaluating uncertainties to deliver enhanced service performance in education PPPs: a hierarchical reliability framework
    Geng, L ; Herath, N ; Hui, FKP ; Liu, X ; Duffield, C ; Zhang, L (EMERALD GROUP PUBLISHING LTD, 2022-06-20)
    Purpose This study aims to develop a hierarchical reliability framework to evaluate the service delivery performance of education public–private partnerships (PPPs) effectively and efficiently during long-term operations. Design/methodology/approach The research design included development and test phases. In the development phase, three performance layers, i.e. indicator, component and system, in the education service delivery system were identified. Then, service component reliability was computed through first order reliability method (FORM). Finally, the reliability of the service system was obtained using dynamic component weightings. A PPP school example in Australia was set up in the test phase, where performance indicators were collected from relevant contract documents and performance data were simulated under three assumptive scenarios. Findings The example in the test phase yielded good results for the developed framework in evaluating uncertainties of service delivery performance for education PPPs. Potentially underperforming services from the component to the system level at dynamic timepoints were identified, and effective preventative maintenance strategies were developed. Research limitations/implications This research enriches reliability theory and performance evaluation research on education PPPs. First, a series of performance evaluation indicators are constructed for assessing the performance of the service delivery of the education PPP operations. Then, a reliability-based framework for service components and system is developed to predict service performance of the PPP school operations with consideration of a range of uncertainties during project delivery. Practical implications The developed framework was illustrated with a real-world case study. It demonstrates that the developed reliability-based framework could potentially provide the practitioners of the public sector with a basis for developing effective preventative maintenance strategies with the aim of prolonging the service life of the PPP schools. Originality/value Evaluating education PPPs is challenging as it involves long-term measurement of various service components under uncertainty. The developed reliability-based framework is a valuable tool to ensure that reliability is maintained throughout the service life of education PPPs in the presence of uncertainty.
  • Item
    Thumbnail Image
    Improving Design by Partnering in Engineering-Procurement-Construction (EPC) Hydropower Projects: A Case Study of a Large-Scale Hydropower Project in China
    Liu, Y ; Tang, W ; Duffield, CF ; Hui, FKP ; Zhang, L ; Zhang, X ; Kang, Y (MDPI, 2021-12-01)
    Hydropower, as a renewable energy resource, has become an important way to fit for Chinese long-term energy policy of energy transformation. Engineering–procurement–construction (EPC) has been increasingly adopted for improving hydropower project delivery efficiency in the utilization of water resources and generation of clean energy, where design plays a critical role in project success. Existing studies advocate the need to use partnering for better solutions to designs in EPC hydropower projects. However, there is a lack of a theoretical framework to systematically address design-related issues considering different participants’ interactions. This study coherently examined the causal relationships among partnering, design management, design capability, and EPC hydropower project performance by establishing and validating a conceptual model, with the support of data collected from a large-scale EPC hydropower project. Path analysis reveals that partnering can directly promote design management and design capability and exert an effect on design capability through enhancing design management, thereby achieving better hydropower project outcomes. This study’s contribution lies in that it theoretically builds the links between intra- and inter-organizational design-related activities by systematically mapping EPC hydropower project performance on partnering, design management, and design capability. These findings also suggest broad practical strategies for participants to optimally integrate their complementary resources into designs to achieve superior hydropower project performance.
  • Item
    Thumbnail Image
    New normal remote communication for collaboration
    Vaz-Serra, P ; Hui, KP ; Aye, L ( 2021-12-19)
    Presented at the 12th International Conference on Structural Engineering and construction Management (ICSECM) 2021, Kandy, Sri Lanka (17-19 December)
  • Item
    No Preview Available
    Effects of learning curve models on onshore wind and solar PV cost developments in the USA
    Castrejon-Campos, O ; Aye, L ; Hui, FKP (PERGAMON-ELSEVIER SCIENCE LTD, 2022-05-01)
    Technological innovation planning for developing and deploying clean energy technologies plays a key role in reducing greenhouse gas emissions and transition to a low-carbon future. Learning curve theory has been adopted as a common framework for exploring the relationship between endogenous technological learning and technology cost developments. The aim of this article is to analyse the effects of selecting different learning curve approaches (i.e. model formulations) to describe energy technology cost changes over time. Experience and knowledge stock are chosen as the sources of learning to be considered. A new definition of experience was developed to account for the interaction between global and local experience. The new definition of experience also accounts for learning sub-processes (i.e. learning-by-doing, learning-by-using, and experience spillovers) to estimate total experience gained through technology deployment. An integrative model is developed for estimating the effects of learning-by-deploying and learning-by-researching on cost developments for onshore wind and solar PV in the USA. Publicly available data from government departments and organisations were utilised. It was found that technology cost developments are better explained when: (1) experience is defined as a function of global and local experience; (2) knowledge stock is also considered in the model formulation; and (3) technological processes affect only a fraction of the total capital cost. The findings suggested that the application of learning rates for model-based energy planning is context-dependent and how technological factors are explicitly defined may have significantly different policy implications (i.e. different technology costs predictions based on alternative model formulations).
  • Item
    No Preview Available
    Dataset on effects of learning curve models on onshore wind and solar PV cost developments in the USA (Version 2)
    Castrejon Campos, O ; Aye, L ; Hui, KP ( 2022-02-21)
    This dataset includes input data to estimate learning-by-deploying (LbD) and learning-by-researching (LbR) rates for onshore wind and solar PV in the United States of America (USA). Using different learning curve approaches the simulated technological-based cost developments are also presented. Coefficient of determination (R squared) and Root Mean Square Error (RMSE) were applied for quantification of the agreement between simulated and observed technological-based costs.
  • Item
    Thumbnail Image
    HOW TO GET INTERNATIONAL CONSTRUCTION PROJECTS DELIVERED ON TIME: FROM CHINESE CONTRACTORS' PERSPECTIVE
    Sun, H ; Tang, W ; Duffield, CF ; Zhang, L ; Hui, FKP (VILNIUS GEDIMINAS TECH UNIV, 2022-01-01)
    67.9% of Chinese international construction projects are seriously delayed, which creates the potential for instability in its rapidly growing share of global contracting markets. A greater understanding of the reasons behind the challenges confronting international contractors is urgently required such that improvements can be developed that ultimately will benefit many countries. This study aims to investigate the time performance of international projects in developing countries and to explore the root causes of time overrun. Based on both quantitative and qualitative analysis of 112 case study projects, collected from 12 of the largest Chinse state-owned enterprises (SOEs), this study identifies the distinctive characteristics of three types of projects (late, acceptable, early) classified based on their time performances. It is established that time performance is significantly related to the contractor’s adaptability and project complexity. The results reveal the root causes of construction delays in international project delivery, which provides a structured and in-depth understanding of both internal and external time performance influential factors. The above findings provide sound basis for guiding practitioners in choosing appropriate strategies to improve project time performance, such as encouraging cross-cultural dialogues, integrating global resources and establishing long-term global partnerships with stakeholders.
  • Item
    No Preview Available
    Dataset on effects of learning curve models on onshore wind and solar PV cost developments in the USA
    Castrejon Campos, O ; Aye, L ; Hui, K ( 2021-11-03)
    This dataset includes input data to estimate learning-by-deploying (LbD) and learning-by-researching (LbR) rates for onshore wind and solar PV in the United States of America (USA). Using different learning curve approaches the simulated technological-based cost developments are also presented. Coefficient of determination (R squared) and Root Mean Square Error (RMSE) were applied for quantification of the agreement between simulated and observed technological-based costs.
  • Item
    Thumbnail Image
    Foreword
    Duffield, C ; Hui, FKP ; Wilson, S ; Duffield, C ; Hui, FKP ; Wilson, S (Open Book Publishers, 2019-11-01)
  • Item
    Thumbnail Image
    Managing Interfaces in Large-Scale Projects: The Roles of Formal Governance and Partnering
    Shen, W ; Tang, W ; Wang, Y ; Duffield, CF ; Hui, FKP ; Zhang, L (ASCE-AMER SOC CIVIL ENGINEERS, 2021-07-01)
    Interface management has been viewed as one of the important organizational capabilities to promote coordination and integration among stakeholders in construction project delivery, especially for large-scale projects. This paper examines the role of formal governance, partnering, and organizational boundary activities and their interactions in interface management performance. An integrated framework with consideration of the influence of formal governance, partnering, and boundary activities on interface management performance and associated project outcomes was developed and empirically tested with data collected from 85 large-scale international projects. The results show that formal governance is the dominant determinant of interface management performance and can indirectly influence it through improving partnering and boundary activities. Partnering and boundary activities are also significant antecedents of interface management performance, which, in turn, improves project outcomes of large-scale construction projects. Formal governance and partnering mutually reinforce each other. Interface management performance is positively related to project outcomes in terms of quality, cost, and schedule. This empirical research contributes to the fundamental understanding of the critical factors that govern the interface management performance and, ultimately, the project outcomes. In addition, the outcomes of this study highlighted the broad managerial implications for participants in large-scale projects.
  • Item
    Thumbnail Image
    A Competency Framework for Construction Engineering Graduates: An Industry Perspective
    ZHANG, X ; TANG, W ; Duffield, CF ; Zhang, L ; Hui, K ; Liu, Y ; Kang, Y (Tempus Publications, 2021-06-20)
    Engineering education plays a key role in training talent engineers to meet the challenges of sustainable development in the construction industry. To address the requirements of construction engineering and sustainable development, a new competency framework was developed based on a systematic literature review. This framework incorporates five categories of competencies, including interdisciplinary knowledge, technical expertise and innovation, identifying and solving problems, managerial capacity, and ethical and professional responsibilities. The framework was validated using a questionnaire survey and eight rounds of interviews. The results suggest that all the five competencies within the proposed framework are important and should be incorporated in the construction engineering education, and this can help graduates deal with sustainability issues in the future.