Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 15
  • Item
    Thumbnail Image
    Managing risks associated with environmental water delivery: a case study of the Goulburn River, Australia
    Meempatta, L ; Webb, JA ; Horne, AC ; Keogh, LA ; Stewardson, MJ (ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD, 2024-01-01)
  • Item
    No Preview Available
    Balancing observational data and experiential knowledge in environmental flows modeling
    Mussehl, M ; Angus Webb, J ; Horne, A ; O'Shea, D (Elsevier BV, 2024-02-01)
  • Item
    No Preview Available
    Exploring the role and decision-making behavior of irrigation water supply authorities in Australia
    Meempatta, L ; Webb, JA ; Keogh, LA ; Horne, AC ; Stewardson, MJ (ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD, 2023-03-04)
  • Item
    No Preview Available
    The time of emergence of climate-induced hydrologic change in Australian rivers
    John, A ; Nathan, R ; Horne, A ; Fowler, K ; Stewardson, M ; Peel, M ; Webb, JA (ELSEVIER, 2023-04)
  • Item
    No Preview Available
    Applying and Assessing Participatory Approaches in an Environmental Flows Case Study
    Mussehl, M ; Webb, JA ; Horne, A ; Rumpff, L ; Poff, L (SPRINGER, 2023-10)
    Environmental flows (e-flows) management takes place within a complex social-ecological system, necessitating the involvement of diverse stakeholders and an appreciation of a range of perspectives and knowledge types. It is widely accepted that incorporating participatory methods into environmental flows decision-making will allow stakeholders to become meaningfully involved, improving potential solutions, and fostering social legitimacy. However, due to substantial structural barriers, implementing participatory approaches can be difficult for water managers. This paper assesses the effectiveness of an e-flows methodology that combines elements of structured decision-making and participatory modeling, whilst constrained by project resources. Three process-based objectives were identified by the group at the start of the process: improving transparency, knowledge exchange, and community ownership. We evaluated the success of the approach according to those objectives using semi-structured interviews and thematic analysis. In evaluating how well the participatory approach achieved the process objectives, we found that at least 80% of respondents expressed positive sentiment in every category (n = 15). We demonstrate that the values-based process objectives defined by the participant group are an effective tool for evaluating participatory success. This paper highlights that participatory approaches can be effective even in resource-constrained environments when the process is adapted to fit the decision-making context.
  • Item
    Thumbnail Image
    Not Just Another Assessment Method: Reimagining Environmental Flows Assessments in the Face of Uncertainty
    Horne, AC ; Webb, JA ; Mussehl, M ; John, A ; Rumpff, L ; Fowler, K ; Lovell, D ; Poff, L (FRONTIERS MEDIA SA, 2022-05-10)
    The numerous environmental flows assessment methods that exist typically assume a stationary climate. Adaptive management is commonly put forward as the preferred approach for managing uncertainty and change in environmental flows. However, we contend that a simple adaptive management loop falls short of meeting the challenges posed by climate change. Rather, a fundamental rethink is required to ensure both the structure of environmental flows assessments, along with each individual technical element, actively acknowledges the multiple dimensions of change, variability and complexity in socio-ecological systems. This paper outlines how environmental flow assessments can explicitly address the uncertainty and change inherent in adaptively managing multiple values for management of environmental flows. While non-stationarity and uncertainty are well recognised in the climate literature, these have not been addressed within the structure of environmental flows methodologies. Here, we present an environmental flow assessment that is structured to explicitly consider future change and uncertainty in climate and socio-ecological values, by examining scenarios using ecological models. The environmental flow assessment methodology further supports adaptive management through the intentional integration of participatory approaches and the inclusion of diverse stakeholders. We present a case study to demonstrate the feasibility of this approach, highlighting how this methodology facilitates adaptive management. Rethinking our approach to environmental flows assessments is an important step in ensuring that environmental flows continue to work effectively as a management tool under climate change.
  • Item
    Thumbnail Image
    Robust Climate Change Adaptation for Environmental Flows in the Goulburn River, Australia
    John, A ; Horne, A ; Nathan, R ; Fowler, K ; Webb, JA ; Stewardson, M (FRONTIERS MEDIA SA, 2021-12-06)
    Climate change presents severe risks for the implementation and success of environmental flows worldwide. Current environmental flow assessments tend to assume climate stationarity, so there is an urgent need for robust environmental flow programs that allow adaptation to changing flow regimes due to climate change. Designing and implementing robust environmental flow programs means ensuring environmental objectives are achieved under a range of uncertain, but plausible climate futures. We apply stress testing concepts previously adopted in water supply management to environmental flows at a catchment scale. We do this by exploring vulnerabilities in different river management metrics for current environmental flow arrangements in the Goulburn River, Australia, under non-stationary climatic conditions. Given the limitations of current environmental flows in supporting ecological outcomes under climate change, we tested three different adaptation options individually and in combination. Stress testing adaptation results showed that increasing environmental entitlements yielded the largest benefits in drier climate futures, whereas relaxing river capacity constraints (allowing more targeted delivery of environmental water) offered more benefits for current and wetter climates. Combining both these options led to greater than additive improvements in allocation reliability and reductions in environmental water shortfalls, and these improvements were achieved across a wider range of climatic conditions than possible with either of the individual options. However, adaptation may present additional risks to some ecological outcomes for wetter climates. Ultimately, there was a degree of plausible climate change beyond which none of the adaptation options considered were effective at improving ecological outcomes. This study demonstrates an important step for environmental flow assessments: evaluating the feasibility of environmental outcomes under climate change, and the intervention options that prove most robust under an uncertain future.
  • Item
    Thumbnail Image
    Purposeful Stakeholder Engagement for Improved Environmental Flow Outcomes
    Mussehl, ML ; Horne, AC ; Webb, JA ; Poff, NL (FRONTIERS MEDIA SA, 2022-01-25)
    Rivers are dynamic social-ecological systems that support societies and ecosystems in a multitude of ways, giving rise to a variety of user groups and competing interests. Environmental flows (e-flows) programs developed to protect riverine environments are often conceived by water managers and researchers. This is despite continued calls for increased public participation to include local communities and Indigenous peoples in the development process. Failure to do so undermines social legitimacy and program effectiveness. In this paper, we describe how adaptive management of e-flows allows an opportunity to incorporate a diversity of stakeholder views through an iterative process. However, to achieve this, stakeholder engagement must be intentionally integrated into the adaptive management cycle. Stakeholder engagement in e-flows allows for the creation of a shared understanding of a river and opens collaborative and innovative management strategies that address multiple axes of uncertainty. Here, we describe a holistic framework that unifies current participatory engagement attempts and existing technical methods into a complete strategy. The framework identifies the primary steps in an e-flows adaptive management cycle, describes potential roles of various stakeholders, and proposes potential engagement tools. Restructuring e-flows methods to adequately include stakeholders requires a shift from being driven by deliverables, such as reports and flow recommendations, to focusing on people-oriented outcomes, such as continuous learning and fostering relationships. While our work has been placed in the context of e-flows, the intentional integration of stakeholder engagement in adaptive management is pertinent to natural resources management generally.
  • Item
    Thumbnail Image
    The politicisation of science in the Murray-Darling Basin, Australia: discussion of 'Scientific integrity, public policy and water governance'
    Stewardson, MJ ; Bond, N ; Brookes, J ; Capon, S ; Dyer, F ; Grace, M ; Frazier, P ; Hart, B ; Horne, A ; King, A ; Langton, M ; Nathan, R ; Rutherfurd, I ; Sheldon, F ; Thompson, R ; Vertessy, R ; Walker, G ; Wang, QJ ; Wassens, S ; Watts, R ; Webb, A ; Western, AW (Taylor & Francis, 2021-10-30)
    Many water scientists aim for their work to inform water policy and management, and in pursuit of this objective, they often work alongside government water agencies to ensure their research is relevant, timely and communicated effectively. A paper in this issue, examining 'Science integrity, public policy and water governance in the Murray-Darling Basin, Australia’, suggests that a large group of scientists, who work on water management in the Murray-Darling Basin (MDB) including the Basin Plan, have been subject to possible ‘administrative capture'. Specifically, it is suggested that they have advocated for policies favoured by government agencies with the objective of gaining personal benefit, such as increased research funding. We examine evidence for this claim and conclude that it is not justified. The efforts of scientists working alongside government water agencies appear to have been misinterpreted as possible administrative capture. Although unsubstantiated, this claim does indicate that the science used in basin water planning is increasingly caught up in the politics of water management. We suggest actions to improve science-policy engagement in basin planning, to promote constructive debate over contested views and avoid the over-politicisation of basin science.
  • Item
    Thumbnail Image
    Informing Environmental Water Management Decisions: Using Conditional Probability Networks to Address the Information Needs of Planning and Implementation Cycles
    Horne, AC ; Szemis, JM ; Webb, JA ; Kaur, S ; Stewardson, MJ ; Bond, N ; Nathan, R (SPRINGER, 2018-03)
    One important aspect of adaptive management is the clear and transparent documentation of hypotheses, together with the use of predictive models (complete with any assumptions) to test those hypotheses. Documentation of such models can improve the ability to learn from management decisions and supports dialog between stakeholders. A key challenge is how best to represent the existing scientific knowledge to support decision-making. Such challenges are currently emerging in the field of environmental water management in Australia, where managers are required to prioritize the delivery of environmental water on an annual basis, using a transparent and evidence-based decision framework. We argue that the development of models of ecological responses to environmental water use needs to support both the planning and implementation cycles of adaptive management. Here we demonstrate an approach based on the use of Conditional Probability Networks to translate existing ecological knowledge into quantitative models that include temporal dynamics to support adaptive environmental flow management. It equally extends to other applications where knowledge is incomplete, but decisions must still be made.