Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Applications of phase change materials in concrete for sustainable built environment: a review
    JAYALATH, A ; Mendis, PA ; Gammampila, GR ; Aye, L (ICSECM 2011, 2011)
    The fast economic development around the globe and high standards of living imposes an ever increasing demand for energy. As a prime consumer of world‟s material and energy resources building and construction industry has a great potential in developing new efficient and environmentally friendly materials to reduce energy consumptions in buildings. Thermal energy storage systems (TES) with Phase change materials (PCM) offer attractive means of improving the thermal mass and the thermal comfort within a building. PCMs are latent heat thermal storage (LHTS) materials with high energy storage density compared to conventional sensible heat storage materials. Concrete incorporating PCM improves the thermal mass of the building which reduces the space conditioning energy consumption and extreme temperature fluctuations within the building. The heat capacity and high density of concrete coupled with latent heat storage of PCM provides a novel energy saving concepts for sustainable built environment. Microencapsulation is a latest and advanced technology for incorporation of PCM in to concrete which creates finely dispersed PCMs with high surface area for greater amount of heat transfer. This paper reviews available literature on Phase change materials in concrete, its application and numerical modelling of composite concrete. However most of the existing TES systems have been explored with wallboards and plaster materials and comparatively a few researches have been done on TES systems using cementitious materials. Thus, there is a need for comprehensive experimental and analytical investigations on PCM applications with cementitious materials as the most widely used construction materials in buildings.
  • Item
    Thumbnail Image
    Application of nanomaterials in the sustainable built environment
    Gammampila, GRG ; Mendis, PAM ; Ngo, TDN ; Aye, LA ; JAYALATH, A ; RUPASINGHE, RAM (University of Moratuwa, 2010)
    Nanotechnology is widely regarded as one of the twenty-first century’s key technologies, and its economic importance is sharply on the rise. In the construction industry, nanomaterials has potentials that are already usable today, especially the functional characteristics such as increased tensile strength, self-cleaning capacity, fire resistance, and additives based on nano materials make common materials lighter, more permeable, and more resistant to wear. Nanomaterial are also considered extremely useful for roofs and facades in the built environment. They also expand design possibilities for interior and exterior rooms and spaces. Nano–insulating materials open up new possibilities for ecologically oriented sustainable infrastructure development. It has been demonstrated that nanotechnology has invented products with many unique characteristics which could significantly provide solutions current construction issues and may change the requirement and organization of construction process. This paper examines and documents applicable nanotechnology based products that can improve the sustainable development and overall competitiveness of the construction industry.
  • Item
    Thumbnail Image
    Airborne and impact sound performance of modern lightweight timber buildings in the Australian construction industry
    Jayalath, A ; Navaratnam, S ; Gunawardena, T ; Mendis, P ; Aye, L (Elsevier BV, 2021-12)
    Timber usage in the Australian construction industry has significantly increased due to its strength, aesthetic properties and extended allowances recently introduced in building codes. However, issues with acoustic performance of lightweight timber buildings were reported due to their inherit product variability and varying construction methods. This article reviews the recent literature on the transmissions of impact and airborne sounds, flanking transmission of timber buildings, and the state of computer prediction tools with reference to the Australian practice. An in-depth analysis of issues and an objective discussion related to acoustic performance of timber buildings are presented. Timber is a lightweight material and shows low airborne sound resistance in low frequency range. Attenuation of sound transmission with addition of mass, layer isolation, different products like cross-laminated timber and prefabrication are discussed. Challenges in measuring sound transmissions and reproducibility of results in low frequency ranges are discussed. Well-defined measurement protocols and refined computer simulation methods are required. The serviceability design criteria for modern lightweight timber applications in Australia need to be re-evaluated in the area of impact generated sound. Developing computer tools to predict airborne and impact sound transmission in lightweight timber buildings is quite challenging as several components such as timber members and complex connections with varying stiffnesses are non-homogeneous by nature. Further, there is a lack of experimentally validated and computationally efficient tools to predict the sound transmission in timber buildings. Computer prediction tools need to be developed with a focus on mid-frequency transmission over flanks and low-frequency transmission of timber and prefabricated buildings.
  • Item
    Thumbnail Image
    Thermal performance of concrete with PCMs
    JAYALATH, A ; Mendis, PA ; Aye, L ; Ngo, TD (University of Moratuwa, 2012-01-01)
    Development of energy efficient and environmentally friendly materials to reduce energy consumption in buildings is a major concern in today’s building and construction industry. Sustainable development of energy efficient materials in buildings needs to consider not only the mechanical properties such as strength and stiffness of structural materials but also thermal properties which includes heat capacity and thermal insulation. Concrete as most widely used construction material has a great potential to improve its heat storing capacity or thermal mass for their effective usage in buildings. One of the promising solutions is thermal energy storage with Phase change materials (PCM). Concrete incorporating PCM improves the thermal mass of the building which reduces the space conditioning energy consumption and extreme temperature fluctuations within the building. The heat capacity and high density of concrete coupled with latent heat storage of PCM provides a novel energy saving concepts for sustainable built environment. Microencapsulation is a latest and advanced technology for incorporation of PCM in to concrete which creates finely dispersed PCMs with high surface area for greater amount of heat transfer. Moreover PCM absorbs the excess energy during cement hydration and reduces the possibility of formation of cracks within the concrete. This paper reviews available literature on Phase change materials in concrete, its application and discusses finite element modelling of thermal performance of composite concrete.
  • Item
    Thumbnail Image
    Effects of phase change material roof layers on thermal performanceof a residential building in Melbourne and Sydney
    Jayalath, A ; AYE, L ; Mendis, P ; Ngo, T (Elsevier, 2016-04-05)
    This paper assesses the effectiveness of Phase Change Materials (PCMs) for the improvement of the thermal performance and the thermal comfort of a residential building in Melbourne. The incorporation of PCMs in buildings with their significant heat storage capacity can delay the heat transfer and reduce the cooling and heating loads. Numerical simulation is a useful tool for comprehensive assessments and optimization of PCM applications in buildings. Thus an available TRNSYS component, PCM Wall: Type1270, was implemented with Type56 (Multi zone component). PCM Wall TRNSYS component has been validated with some experimental data published in the open literature. The validated model was then utilised to simulate the thermal performance of a residential building which has a PCM roof layer. The building is a typical single-storey, three bed room residential building in Melbourne. It was found that the PCM roof layer can reduce the cooling and heating loads whilst providing better thermal comfort for occupants with reduced indoor temperature fluctuations.