Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 37
  • Item
    Thumbnail Image
    New normal remote communication for collaboration
    Vaz-Serra, P ; Hui, KP ; Aye, L ( 2021-12-19)
    Presented at the 12th International Conference on Structural Engineering and construction Management (ICSECM) 2021, Kandy, Sri Lanka (17-19 December)
  • Item
    Thumbnail Image
    Effects of Working from Home on Greenhouse Gas Emissions and the Associated Energy Costs in Six Australian Cities
    Navaratnam, S ; Jayalath, A ; Aye, L (MDPI, 2022-04-01)
    Working from home (WFH) has been imposed due to the COVID-19 pandemic. The adoption of WFH impacts energy use in the residential, commercial, and transportation sectors. Consequently, this affects the greenhouse gas emission (GHGE) and the associated energy costs to workers and employers. This study estimates the effects of WFH on the GHGE and energy-related costs in the residential, commercial, and transportation sectors. A simple linear model was used to estimate the changes in the GHGEs and cost by a typical employee when WFH practice is adopted for 1.5 and 4 days per week. The adoption of WFH reduces the operational GHGE accounted for commercial buildings and transport. However, it increases the operational GHGE accounted for residential buildings, which is a maximum of about 6% and 12%, respectively, for WFH 1.5 and 4 days. The reduction of GHGE from transport is significantly higher than that of residential buildings. The GHGE reductions from the transport sector are about 30% and 80%, respectively, for WFH 1.5 days and 4 days per week. WFH for 1.5 and 4 days per week reduces the national annual GHGE by about 1.21 Mt CO2-e and 5.76 Mt CO2-e, respectively. Further, the annual transportation cost of an employee is reduced by 30% and 80% in each city when the employee WFH for 1.5 and 4 days per week. The outcomes of this study offer a direction to reduce energy consumption and related costs and potential future research avenues on this topic. Further, the findings also help policymakers develop a hybrid work model for the post-COVID-19 pandemic.
  • Item
    No Preview Available
    A multi-layered energy resilience framework and metrics for energy master planning of communities: A university campus case study
    Charani Shandiz, S ; Rismanchi, B ; Foliente, G ; Aye, L (Society of Risk Analysis, 2021-12-05)
  • Item
    No Preview Available
  • Item
    Thumbnail Image
    Lessons learned from PCM embedded radiant chilled ceiling experiments in Melbourne
    Mousavi, S ; Rismanchi, B ; Brey, S ; Aye, L (Instituto Superior de Engenharia do Porto, 2021-09-14)
    Buildings are responsible for over a third of energy consumption worldwide, particularly for the increasing demand of air-conditioners in response to the more extreme heat around the globe. It is imperative to move towards more energy-efficient space cooling alternatives. The integration of phase change material (PCM) with a radiant chilled ceiling (RCC) is a promising technology due to its benefits regarding energy efficiency and indoor environmental quality. This article presents a field study conducted on a newly-developed PCM embedded radiant chilled ceiling (PCM-RCC) installed in a stand-alone cabin located in Melbourne. The study evaluates the thermal and energy performance of the system through investigation of the transient thermal behaviour of PCM panels in charging-discharging cycles, the indoor comfort conditions, and the electricity peak demand. It was observed that the proposed PCM-RCC can provide satisfactory comfort conditions and contribute to load shifting if a refined operating strategy is applied. The efficiency of PCM recharge overnight depends on several factors that need to be carefully considered in design. The challenges related to the implementation of optimal operating dynamic schedules in response to the thermal behaviour of PCM-RCC, and accurate weather forecasting should be addressed to realise the full potential of this technology.
  • Item
    Thumbnail Image
    Heat Pump: An enabling technology in the future low carbon energy systems?
    Aye, L ( 2022-04-06)
    Invited Talk: Presented at the International Symposium on Energy Management and Sustainability (ISEMAS) 2022, 5-9 April 2022
  • Item
    Thumbnail Image
    Solar Boosted Heat Pump (SBHP) in Australia: A lesson learned
    Aye, L ( 2022-03-09)
    Presented at the workshop on the IEA EBC new Annex proposal “Evaluation and Demonstration of Actual Energy Efficiency of Heat Pumps in Buildings” 8-9 March 2022
  • Item
    Thumbnail Image
    An innovative cost-effective floating solar still with integrated condensation coils
    Mohsenzadeh, M ; Aye, L ; Christopher, P (Australian PV Institute, 2021-12-16)
  • Item
    Thumbnail Image
    An update on Activity C1 Design Tools and Models, Task 65 Solar Cooling Sunbelt Regions
    Aye, L ; Daborer-Prado, N ; Neyer, D ; Jakob, U (Australian PV Institute, 2021-12-16)
  • Item
    No Preview Available
    Effects of learning curve models on onshore wind and solar PV cost developments in the USA
    Castrejon-Campos, O ; Aye, L ; Hui, FKP (PERGAMON-ELSEVIER SCIENCE LTD, 2022-05-01)
    Technological innovation planning for developing and deploying clean energy technologies plays a key role in reducing greenhouse gas emissions and transition to a low-carbon future. Learning curve theory has been adopted as a common framework for exploring the relationship between endogenous technological learning and technology cost developments. The aim of this article is to analyse the effects of selecting different learning curve approaches (i.e. model formulations) to describe energy technology cost changes over time. Experience and knowledge stock are chosen as the sources of learning to be considered. A new definition of experience was developed to account for the interaction between global and local experience. The new definition of experience also accounts for learning sub-processes (i.e. learning-by-doing, learning-by-using, and experience spillovers) to estimate total experience gained through technology deployment. An integrative model is developed for estimating the effects of learning-by-deploying and learning-by-researching on cost developments for onshore wind and solar PV in the USA. Publicly available data from government departments and organisations were utilised. It was found that technology cost developments are better explained when: (1) experience is defined as a function of global and local experience; (2) knowledge stock is also considered in the model formulation; and (3) technological processes affect only a fraction of the total capital cost. The findings suggested that the application of learning rates for model-based energy planning is context-dependent and how technological factors are explicitly defined may have significantly different policy implications (i.e. different technology costs predictions based on alternative model formulations).