Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 35
  • Item
    Thumbnail Image
    Lean and Green: How the Synergy Can Promote Sustainable Construction
    Peiris, PA ; Herath, N ; NGO, T ; Duffield, CF ; Hui, KP ; Dissanayake, R ; Mendis, P ; Weerasekera, K ; De Silva, S ; Fernando, S ; Konthesingha, C ; Gajandayake, P (Springer Nature, 2023-08-01)
    Lean construction aims to improve efficiency through the reduction of wasteful activities. These waste reduction activities also indirectly improve the sustainability approach used by organizations. Our paper examines the definition of lean construction (LC), LC activities, and green construction as understood by academics through a focused literature review. It then examines these practices considering how these activities contribute towards enhancing the sustainability of the built environment and the organization. Our findings suggest that not all waste reduction activities have the same degree of effect on sustainability improvements. Some lean tools such as standardization and just-in-time (JIT) for production scheduling can have a better effect, especially, if the key performance indicators (KPI) specifically target sustainability indicators. “Lean and Green” is not a myth and is very much achievable in the construction industry with the current efforts towards industry 4.0/5.0. Combining these two concepts remains a challenge. This paper aims to learn from what we already know and suggests ways on how “Lean and Green” can be achieved in the future. The paper includes a discussion on leveraging lean and green concepts to achieve the sustainable development goals promoted by the United Nations.
  • Item
    No Preview Available
    How Can Decarbonisation Alternatives Be Prioritised to Achieve Carbon Neutrality in Building Projects?
    Too, J ; Ejohwomu, OA ; Hui, FKP ; Herath, N ; Duffield, C ; Soules, JG (ASCE American Society of Civil Engineers, 2023-01-01)
    The built environment generates approximately 40% of the annual global carbon emissions. To achieve the Paris Agreement target towards net-zero emissions, timely and sufficient plans for emissions reduction in the sector need to be made. One of the optimal strategies to realize sustainable structures is to select decarbonisation alternatives that will present a holistic view of environmental impacts. This research effort examined how decarbonisation alternatives are prioritised to achieve carbon neutrality in building projects. Based on extensive semi-structured interviews with experts, this research identified energy, emissions, economy, and exergy (4Es) as the four critical variables considered when making decarbonisation decisions. These 4Es were then assigned to different evaluation criteria, resulting in a total of 27 evaluation criteria. These findings will assist built environment professionals to prioritise decarbonisation alternatives across the entire project lifecycle. It will also provide policymakers with new insights for assessing potential impacts based on these four variables.
  • Item
    No Preview Available
    Production scheduling in modular construction: Metaheuristics and future directions
    Peiris, A ; Hui, FKP ; Duffield, C ; Ngo, T (Elsevier, 2023-06)
    Modular construction (MC) is an increasingly important construction technique. However, it also requires the use of sophisticated scheduling algorithms. A comprehensive literature review of different scheduling systems used for prefabricated construction, was conducted using the PRISMA methodology. Over 500 relevant papers were analysed and 59 critical applications of production scheduling metaheuristics were closely examined. However, very few of these were for modular construction. This paper provides a deep analysis of GA applications in scheduling and the newer techniques using PSO, SA and ACO. The results of the review suggest 6 directions for future research namely, (i) Consideration of added complexities, (ii) Responsiveness of the scheduling system to new tenders or work, (iii) Integrating production scheduling with Manufacturing Execution and Control Systems, (iv) Dynamic scheduling, (v) Simulation-based optimization techniques for MC, (vi) Use of AI and machine learning concepts for MC. This paper will inform better production scheduling of MC projects.
  • Item
    Thumbnail Image
    Digitalising modular construction: Enhancement of off-site manufacturing productivity via a manufacturing execution & control (MEC) system
    Peiris, A ; Hui, FKP ; Duffield, C ; Wang, J ; Garcia, MG ; Chen, Y ; Ngo, T (Elsevier, 2023-03-02)
    Modular construction facilities operate under tight deadlines making the monitoring of manufacturing progress and delivery for optimal factory-to-site operations a significant challenge. This paper presents an action research study that assisted in enhancing the productivity of a manufacturing execution and control system implemented at a facility in Melbourne, Australia. This system monitors production processes, and shares information for timely, well-informed decision-making using an online platform and a mobile app, developed using lean principles. The results showed significant time and cost savings, quality improvement and increased visibility of inefficiencies and will serve as a helpful reference for construction factory managers wishing to improve their manufacturing systems.
  • Item
    Thumbnail Image
    Analytical Framework for Understanding the Differences between Technical Standards Originating from Various Regions to Improve International Hydropower Project Delivery
    You, R ; Tang, W ; Duffield, CF ; Zhang, L ; Hui, F ; Kang, Y (MDPI, 2022-02)
    The international hydropower construction market is continuously growing during the past decade. The existing literature points out that contractors are facing ongoing difficulties in achieving the objectives of developing international hydropower projects, which largely arise from the misunderstanding and poor use of international technical standards. However, there is a lack of a coherent framework to help systematically analyze the differences between technical standards originating from various regions. This study establishes an analytical framework that incorporates the essential factors of technical standards, namely philosophy of standards, logical structure, completeness of standards, calculation method, equipment and material requirements, test method, construction method, and application conditions of standards, and demonstrates their relationships from a holistic perspective. With support of the data collected from Chinese contractors, the results revealed the application status of various technical standards and their differences. Hierarchical cluster analysis demonstrates that unfamiliarity with the differences between domestic and international technical standards can cause multiple problems in international hydropower project delivery, concerning applying international standards, integrated project management, design, procurement, and construction, which have broad theoretical and practical implications. The outcomes of this study can not only help contractors improve their capabilities of applying international standards for achieving superior international hydropower project performance, but also facilitate mutual recognition of the standards from various regions, thereby maximizing the effectiveness of global resources such as expertise, technologies, methods, and products.
  • Item
    No Preview Available
    Challenges in Transport Logistics for Modular Construction: A Case Study
    Peiris, PA ; Hui, K ; Ngo, T ; Duffield, CF ; Garcia, MG ; Dissanayake, R ; Mendis, P ; Weerasekera, K ; De Silva, S ; Fernando, S ; Konthesingha, C (Springer Nature, 2023-01-01)
    Construction logistics is one of the essential functions in the modular construction industry due to the high demand for on-time delivery of components. For modular component suppliers, there is minimal flexibility in delivery times as generally, the installation times of modular components are critical to the contractor’s construction programme. There are several studies conducted in recent years that articulate novel methodologies in construction logistics scheduling; however, the industry still faces challenges in streamlining the whole supply chain to better cater to potential uncertainties that impact construction logistics. This paper looks at a case study on a modular component supplier in Melbourne, with regarding to the challenges faced and how they have effectively overcome these challenges and provides a framework to mitigate construction logistics related discrepancies in the supply chain. The resilience of these methods in facing unforeseen events such as COVID-19 will also be discussed. The overarching objectives of this paper are to include: (1) bibliographic mapping of related publications; (2) identification of current methods, problems and technologies used in modular construction logistics; and (3) propose best practice guidelines that can be implemented to effectively cater to such uncertainties in construction logistics to minimise the impact on the supply chain. Further, incorporating lean principles for planning construction logistics and transport for the modular construction industry is also in discussion. Finally, the potential future research directions are highlighted to guide the researchers to pursue areas of much importance.
  • Item
    Thumbnail Image
    Framework for standardising carbon neutrality in building projects
    Too, J ; Ejohwomu, OA ; Hui, FKP ; Duffield, C ; Bukoye, OT ; Edwards, DJ (Elsevier, 2022-11-01)
    The construction industry accounts for approximately 40% of the global carbon emissions and is the largest consumer of materials and energy. Given the Paris Agreement target towards global net-zero greenhouse gas (GHG) emissions, significant changes are required in the design, construction and use of buildings. This study applies a qualitative approach that combines a systematic literature review (SLR) with in-depth semi-structured interviews with experts to analyse existing carbon neutrality frameworks and decision support tools; expanding current knowledge by bringing to the fore the challenges experienced in implementing these frameworks. This research effort reveals an inadequacy in frameworks for effective decision-making on decarbonisation strategies along the project lifecycle. A novel framework that breaks down the activities and decision points across the entire project lifecycle is proposed to bridge this gap in literature. The developed framework defines whole lifecycle cost, whole lifecycle energy use, exergetic lifecycle and whole lifecycle emissions as the four critical underpinning variables considered in making decarbonisation decisions. It further details the key evaluation criteria to facilitate decision-making at each stage of the project lifecycle and provides decision-makers with contextual guidance for assessing the impact of their decarbonisation decisions at the planning, delivery, closure and operations phases of the project. It will assist academic researchers, building owners and industry professionals to keep track of the project's carbon neutrality target and encourage best practices for carbon emission reduction in the building sector.
  • Item
    No Preview Available
    A review of facilities management interventions to mitigate respiratory infections in existing buildings
    Zhang, Y ; Hui, FKP ; Duffield, C ; Saeed, AM (PERGAMON-ELSEVIER SCIENCE LTD, 2022-08-01)
    The Covid-19 pandemic reveals that the hazard of the respiratory virus was a secondary consideration in the design, development, construction, and management of public and commercial buildings. Retrofitting such buildings poses a significant challenge for building owners and facilities managers. This article reviews current research and practices in building operations interventions for indoor respiratory infection control from the perspective of facilities managers to assess the effectiveness of available solutions. This review systematically selects and synthesises eighty-six articles identified through the PRISMA process plus supplementary articles identified as part of the review process, that deal with facilities' operations and maintenance (O&M) interventions. The paper reviewed the context, interventions, mechanisms, and outcomes discussed in these articles, concluding that interventions for respiratory virus transmission in existing buildings fall into three categories under the Facilities Management (FM) discipline: Hard services (HVAC and drainage system controls) to prevent aerosol transmissions, Soft Services (cleaning and disinfection) to prevent fomite transmissions, and space management (space planning and occupancy controls) to eliminate droplet transmissions. Additionally, the research emphasised the need for FM intervention studies that examine occupant behaviours with integrated intervention results and guide FM intervention decision-making. This review expands the knowledge of FM for infection control and highlights future research opportunities.
  • Item
    Thumbnail Image
    Evaluating uncertainties to deliver enhanced service performance in education PPPs: a hierarchical reliability framework
    Geng, L ; Herath, N ; Hui, FKP ; Liu, X ; Duffield, C ; Zhang, L (EMERALD GROUP PUBLISHING LTD, 2023-11-27)
    Purpose This study aims to develop a hierarchical reliability framework to evaluate the service delivery performance of education public–private partnerships (PPPs) effectively and efficiently during long-term operations. Design/methodology/approach The research design included development and test phases. In the development phase, three performance layers, i.e. indicator, component and system, in the education service delivery system were identified. Then, service component reliability was computed through first order reliability method (FORM). Finally, the reliability of the service system was obtained using dynamic component weightings. A PPP school example in Australia was set up in the test phase, where performance indicators were collected from relevant contract documents and performance data were simulated under three assumptive scenarios. Findings The example in the test phase yielded good results for the developed framework in evaluating uncertainties of service delivery performance for education PPPs. Potentially underperforming services from the component to the system level at dynamic timepoints were identified, and effective preventative maintenance strategies were developed. Research limitations/implications This research enriches reliability theory and performance evaluation research on education PPPs. First, a series of performance evaluation indicators are constructed for assessing the performance of the service delivery of the education PPP operations. Then, a reliability-based framework for service components and system is developed to predict service performance of the PPP school operations with consideration of a range of uncertainties during project delivery. Practical implications The developed framework was illustrated with a real-world case study. It demonstrates that the developed reliability-based framework could potentially provide the practitioners of the public sector with a basis for developing effective preventative maintenance strategies with the aim of prolonging the service life of the PPP schools. Originality/value Evaluating education PPPs is challenging as it involves long-term measurement of various service components under uncertainty. The developed reliability-based framework is a valuable tool to ensure that reliability is maintained throughout the service life of education PPPs in the presence of uncertainty.
  • Item
    Thumbnail Image
    Improving Design by Partnering in Engineering-Procurement-Construction (EPC) Hydropower Projects: A Case Study of a Large-Scale Hydropower Project in China
    Liu, Y ; Tang, W ; Duffield, CF ; Hui, FKP ; Zhang, L ; Zhang, X ; Kang, Y (MDPI, 2021-12)
    Hydropower, as a renewable energy resource, has become an important way to fit for Chinese long-term energy policy of energy transformation. Engineering–procurement–construction (EPC) has been increasingly adopted for improving hydropower project delivery efficiency in the utilization of water resources and generation of clean energy, where design plays a critical role in project success. Existing studies advocate the need to use partnering for better solutions to designs in EPC hydropower projects. However, there is a lack of a theoretical framework to systematically address design-related issues considering different participants’ interactions. This study coherently examined the causal relationships among partnering, design management, design capability, and EPC hydropower project performance by establishing and validating a conceptual model, with the support of data collected from a large-scale EPC hydropower project. Path analysis reveals that partnering can directly promote design management and design capability and exert an effect on design capability through enhancing design management, thereby achieving better hydropower project outcomes. This study’s contribution lies in that it theoretically builds the links between intra- and inter-organizational design-related activities by systematically mapping EPC hydropower project performance on partnering, design management, and design capability. These findings also suggest broad practical strategies for participants to optimally integrate their complementary resources into designs to achieve superior hydropower project performance.