Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 31
  • Item
    No Preview Available
  • Item
    No Preview Available
    On how data are partitioned in model development and evaluation: Confronting the elephant in the room to enhance model generalization*
    Maier, HR ; Zheng, F ; Gupta, H ; Chen, J ; Mai, J ; Savic, D ; Loritz, R ; Wu, W ; Guo, D ; Bennett, A ; Jakeman, A ; Razavi, S ; Zhao, J (ELSEVIER SCI LTD, 2023-09)
  • Item
    No Preview Available
    Shifts in stream salt loads during and after prolonged droughts
    Lintern, A ; Kho, N ; Peterson, T ; Guo, D (WILEY, 2023-06)
    Abstract It has been widely assumed that after prolonged droughts, catchment runoff recovers to pre‐drought levels. This assumption has recently been evaluated and challenged using empirical observations. However, water quality response and recovery, or otherwise, during and after prolonged droughts remains an open question. Answering this question potentially identifies any changes in catchment hydrological processes and water balance (e.g., the proportion of groundwater contribution to streamflow), thus informing the mechanisms for runoff non‐recovery after prolonged drought. Water quality responses to drought can also inform any long‐term water quality changes beyond what is observable from trend analyses. Here stream salt load changes were investigated using hidden Markov models (HMMs), where monthly rainfall was included as a predictor of stream salt loads. Monthly riverine salt fluxes at eight sites in Victoria (Australia) were examined before, during and after a prolonged drought in South‐East Australia—the Millennium Drought. Two‐state models, where salt loads varied between ‘normal’ and ‘low’ states, were found to better predict in‐stream salt loads compared to single‐state models. The results showed that catchments shifted to a low salt load state generally after the catchment changed to a low runoff state. As groundwater is understood to be the major source of salts in these catchments, this suggests that reductions in groundwater flow into rivers occur as a result of the shift to a lower runoff state. Understanding how readily water quality in catchments shift to different states during and after prolonged droughts enables appropriate catchment management based on our understanding of changes to catchment hydrology.
  • Item
    Thumbnail Image
    Detecting and explaining long-term changes in river water quality in south-eastern Australia
    He, Z ; Yao, J ; Lu, Y ; Guo, D (WILEY, 2022-11)
    Abstract Understanding the temporal changes in river water quality is important for catchment water quality management. This study aims to detect and attribute long‐term trends and abrupt changes in river water quality. We used 26 years of water quality data (1994–2020) collected from 102 river monitoring sites across Victoria, south‐eastern Australia. We analysed six water quality constituents that are of key concerns for Australian catchment management, namely: electrical conductivity (EC), total suspended solids, nitrate‐nitrite, total Kjeldahl nitrogen, total phosphorous and filtered reactive phosphorus. To detect trends and abrupt changes in water quality at each site, a Bayesian ensemble modelling approach was applied, namely, the Bayesian estimator of abrupt change, seasonal change, and trend (BEAST). To explain water quality trends, we then built multivariate regressions to link water quality with streamflow and seasonality, and then compared alternative model structures with and without a change in the regression relationships informed by the changes detected by BEAST. Among the six constituents studied, EC shows the most distinct systematic trends, with 21 sites having a significant increase followed by a non‐significant trend; within the 21 sites, 14 had a significant change point in EC around Year 2010. The regression analyses between water quality and streamflow suggested that the observed systematic change in EC could be largely related to reduced streamflow during the Millennium drought, which greatly impacted the climate and hydrology of south‐eastern Australia over the first decade of 2000. The results of this study can help inform the design of effective mitigation strategies and avoid further degradation of water quality across Victoria. Besides, our trend analysis and attribution approaches are applicable to water quality time series in other regions for robust trend analysis and change point detection.
  • Item
    No Preview Available
    Diverging projections for flood and rainfall frequency curves
    Wasko, C ; Guo, D ; Ho, M ; Nathan, R ; Vogel, E (ELSEVIER, 2023-05)
  • Item
    No Preview Available
    Training sample selection for robust multi-year within-season crop classification using machine learning
    Gao, Z ; Guo, D ; Ryu, D ; Western, AW (Elsevier BV, 2023-07-01)
    Within-season crop classification using multispectral imagery is an effective way to generate timely crop maps that can support water and crop management; however, developing such models is challenging due to limited satellite imagery and ground truth data available during the season. This study investigated ways to optimize the use of multi-year samples in a within-season crop classification model, aiming to enable accurate within-season crop mapping across years. Our study focused on classifying field-scale corn/maize, cotton, and rice in south-eastern Australia from 2013 to 2019. The crop classification model was based on the random forest and support vector machine algorithms applied to Landsat 8 multispectral bands. We designed four experiments to understand the influences of training sample selection on model accuracy. Specifically, we analyzed how the within-season classification accuracies are affected by 1) training sample size; 2) proportions of classification classes; 3) the inclusion of a non-crop class (e.g., fallow land) in the training sample, and 4) training samples collected from different years. We found that 1) the training sample size should be sufficiently large to ensure within-season classification accuracy; 2) using training samples for each crop type in proportion to their occurrence within the landscape results in more accurate multi-year classification; 3) the inclusion of the non-crop class can reduce the accuracy with which crop types are distinguished, so the proportion of the non-crop class should be maintained at a relatively low level, and 4) predicting the current year with training samples from previous years can lead to a minor decline in accuracy compared to using samples only from the current year. These training sample settings were adopted to develop a final model. We found that the model accuracy continues to improve as more input imagery is added as the cropping season progresses, with a rapid rate of initial improvement which then slows. December, the third month of the summer growing season, is the earliest time that reliable maps were generated, with an overall accuracy of 86 % and user's accuracies for all crops exceeding 80 %. Our proposed experiments are robust and transferable to other regions and seasons to assist the development of within-season crop maps, and can thus be valuable tools to support agricultural management.
  • Item
    Thumbnail Image
    Understanding event runoff coefficient variability across Australia using the hydroEvents R package
    Wasko, C ; Guo, D (WILEY, 2022-04)
    Abstract Identification and pairing of hydrologic events form the basis of various analyses, from identifying events for the calibration of hydrologic models, to calculation of event runoff coefficients for catchment characterization. Despite this, there is no unified approach for identifying hydrologic events. Here, using the R package, hydroEvents (https://CRAN.R-project.org/package=hydroEvents), we compare multiple methods of extracting and pairing hydrologic events focussing on the relationship between rainfall and runoff. We find the four common analytical approaches used to identify runoff events—based on either event threshold, local maxima/minima, or proportion of baseflow contribution, give similar results. However, when rainfall events are paired to runoff, the type of algorithm and the direction of pairing (either from rainfall to runoff, or runoff to rainfall) make a considerable difference to the final event pairs identified and resulting analyses. Here, we demonstrate the value of automated event extraction and pairing algorithms for large‐sample hydrology analysis by calculating event runoff coefficients across Australia. Our results show that climatology is a key driver of catchment rainfall‐runoff response with much of Australia dominated by excess rainfall runoff generation. However, our results also show that the variability due to pairing method can introduce a variability equal to that of the climatology due to biasing the runoff mechanism within the sample. With this analysis we demonstrate the importance of systematic and consistent approaches to hydrologic characterization when identifying and pairing hydrological events.
  • Item
    Thumbnail Image
    An analysis framework to evaluate irrigation decisions using short-term ensemble weather forecasts
    Guo, D ; Wang, QJ ; Ryu, D ; Yang, Q ; Moller, P ; Western, AW (SPRINGER, 2023-01)
    Abstract Irrigation water is an expensive and limited resource and optimal scheduling can boost water efficiency. Scheduling decisions often need to be made several days prior to an irrigation event, so a key aspect of irrigation scheduling is the accurate prediction of crop water use and soil water status ahead of time. This prediction relies on several key inputs including initial soil water status, crop conditions and weather. Since each input is subject to uncertainty, it is important to understand how these uncertainties impact soil water prediction and subsequent irrigation scheduling decisions. This study aims to develop an uncertainty-based analysis framework for evaluating irrigation scheduling decisions under uncertainty, with a focus on the uncertainty arising from short-term rainfall forecasts. To achieve this, a biophysical process-based crop model, APSIM (The Agricultural Production Systems sIMulator), was used to simulate root-zone soil water content for a study field in south-eastern Australia. Through the simulation, we evaluated different irrigation scheduling decisions using ensemble short-term rainfall forecasts. This modelling produced an ensemble of simulations of soil water content, as well as ensemble simulations of irrigation runoff and drainage. This enabled quantification of risks of over- and under-irrigation. These ensemble estimates were interpreted to inform the timing of the next irrigation event to minimize both the risks of stressing the crop and/or wasting water under uncertain future weather. With extension to include other sources of uncertainty (e.g., evapotranspiration forecasts, crop coefficient), we plan to build a comprehensive uncertainty framework to support on-farm irrigation decision-making.
  • Item
    No Preview Available
    A predictive model for spatio-temporal variability in stream water quality
    Guo, D ; Lintern, A ; Webb, JA ; Ryu, D ; Bende-Michl, U ; Liu, S ; Western, AW ( 2019-07-23)
    Abstract. Degraded water quality in rivers and streams can have large economic, societal and ecological impacts. Stream water quality can be highly variable both over space and time. To develop effective management strategies for riverine water quality, it is critical to be able to predict these spatio-temporal variabilities. However, our current capacity to model stream water quality is limited, particularly at large spatial scales across multiple catchments. This is due to a lack of understanding of the key controls that drive spatio-temporal variabilities of stream water quality. To address this, we developed a Bayesian hierarchical statistical model to analyse the spatio-temporal variability in stream water quality across the state of Victoria, Australia. The model was developed based on monthly water quality monitoring data collected at 102 sites over 21 years. The modelling focused on six key water quality constituents: total suspended solids (TSS), total phosphorus (TP), filterable reactive phosphorus (FRP), total Kjeldahl nitrogen (TKN), nitrate-nitrite (NOx), and electrical conductivity (EC). Among the six constituents, the models explained varying proportions of variation in water quality. EC was the most predictable constituent (88.6 % variability explained) and FRP had the lowest predictive performance (19.9 % variability explained). The models were validated for multiple sets of calibration/validation sites and showed robust performance. Temporal validation revealed a systematic change in the TSS model performance across most catchments since an extended drought period in the study region, highlighting potential shifts in TSS dynamics over the drought. Further improvements in model performance need to focus on: (1) alternative statistical model structures to improve fitting for the low concentration data, especially records below the detection limit; and (2) better representation of non-conservative constituents by accounting for important biogeochemical processes. We also recommend future improvements in water quality monitoring programs which can potentially enhance the model capacity, via: (1) improving the monitoring and assimilation of high-frequency water quality data; and (2) improving the availability of data to capture land use and management changes over time.
  • Item
    Thumbnail Image
    A Bayesian approach to understanding the key factors influencing temporal variability in stream water quality: a case study in the Great Barrier Reef catchments
    Liu, S ; Ryu, D ; Webb, JA ; Lintern, A ; Guo, D ; Waters, D ; Western, AW ( 2021-01-12)
    Abstract. Stream water quality is highly variable both across space and time. Water quality monitoring programs have collected a large amount of data that provide a good basis to investigate the key drivers of spatial and temporal variability. Event-based water quality monitoring data in the Great Barrier Reef catchments in northern Australia provides an opportunity to further our understanding of water quality dynamics in sub-tropical and tropical regions. This study investigated nine water quality constituents, including sediments, nutrients and salinity, with the aim of: 1) identifying the influential environmental drivers of temporal variation in flow event concentrations; and 2) developing a modelling framework to predict the temporal variation in water quality at multiple sites simultaneously. This study used a hierarchical Bayesian model averaging framework to explore the relationship between event concentration and catchment-scale environmental variables (e.g., runoff, rainfall and groundcover conditions). Key factors affecting the temporal changes in water quality varied among constituent concentrations, as well as between catchments. Catchment rainfall and runoff affected in-stream particulate constituents, while catchment wetness and vegetation cover had more impact on dissolved nutrient concentration and salinity. In addition, in large dry catchments, antecedent catchment soil moisture and vegetation had a large influence on dissolved nutrients, which highlights the important effect of catchment hydrological connectivity on pollutant mobilisation and delivery.