Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    No Preview Available
    A predictive model for spatio-temporal variability in stream water quality
    Guo, D ; Lintern, A ; Webb, JA ; Ryu, D ; Bende-Michl, U ; Liu, S ; Western, AW ( 2019-07-23)
    Abstract. Degraded water quality in rivers and streams can have large economic, societal and ecological impacts. Stream water quality can be highly variable both over space and time. To develop effective management strategies for riverine water quality, it is critical to be able to predict these spatio-temporal variabilities. However, our current capacity to model stream water quality is limited, particularly at large spatial scales across multiple catchments. This is due to a lack of understanding of the key controls that drive spatio-temporal variabilities of stream water quality. To address this, we developed a Bayesian hierarchical statistical model to analyse the spatio-temporal variability in stream water quality across the state of Victoria, Australia. The model was developed based on monthly water quality monitoring data collected at 102 sites over 21 years. The modelling focused on six key water quality constituents: total suspended solids (TSS), total phosphorus (TP), filterable reactive phosphorus (FRP), total Kjeldahl nitrogen (TKN), nitrate-nitrite (NOx), and electrical conductivity (EC). Among the six constituents, the models explained varying proportions of variation in water quality. EC was the most predictable constituent (88.6 % variability explained) and FRP had the lowest predictive performance (19.9 % variability explained). The models were validated for multiple sets of calibration/validation sites and showed robust performance. Temporal validation revealed a systematic change in the TSS model performance across most catchments since an extended drought period in the study region, highlighting potential shifts in TSS dynamics over the drought. Further improvements in model performance need to focus on: (1) alternative statistical model structures to improve fitting for the low concentration data, especially records below the detection limit; and (2) better representation of non-conservative constituents by accounting for important biogeochemical processes. We also recommend future improvements in water quality monitoring programs which can potentially enhance the model capacity, via: (1) improving the monitoring and assimilation of high-frequency water quality data; and (2) improving the availability of data to capture land use and management changes over time.
  • Item
    Thumbnail Image
    A web-based interface to visualize and model spatio-temporal variability of stream water quality
    Guo, D ; Lintern, A ; Webb, J ; Ryu, D ; Liu, S ; Bende-Michl, U ; Leahy, P ; Waters, D ; Watson, M ; Wilson, P ; Western, A ; Vietz, G ; Rutherfurd, I (River Basement Management Society, 2018)
    Understanding the spatio-temporal variability in stream water quality is critical for designing effective water quality management strategies. To facilitate this, we developed a web-based interface to visualize and model the spatio-temporal variability of stream water quality in Victoria. We used a dataset of long-term monthly water quality measurements from 102 monitoring sites in Victoria, focusing on six water quality constituents: total suspended solids (TSS), total phosphorus (TP), filterable reactive phosphorus (FRP), total Kjedahl nitrogen (TKN), nitrate-nitrite (NOx), and electrical conductivity (EC). The interface models spatio-temporal variability in water quality via a Bayesian hierarchical modelling framework, and produces summaries of (1) the key driving factors of spatio-temporal variability and (2) model performance assessed by multiple metrics. Additional features include predicting the time-averaged mean concentration at an un-sampled site, and testing the impact of land-use changes on the mean concentration at existing sites. This tool can be very useful in supporting the decision-making processes of catchment managers in (1) understanding the key drivers of changes in water quality and (2) designing water quality mitigation and restoration strategies.
  • Item
    Thumbnail Image
    Characterisation of spatial variability in water quality in the Great Barrier Reef catchments using multivariate statistical analysis
    Liu, S ; Ryu, D ; Webb, JA ; Lintern, A ; Waters, D ; Guo, D ; Western, AW (PERGAMON-ELSEVIER SCIENCE LTD, 2018-12)
    Water quality monitoring is important to assess changes in inland and coastal water quality. The focus of this study was to improve understanding of the spatial component of spatial-temporal water quality dynamics, particularly the spatial variability in water quality and the association between this spatial variability and catchment characteristics. A dataset of nine water quality constituents collected from 32 monitoring sites over a 11-year period (2006-2016), across the Great Barrier Reef catchments (Queensland, Australia), were evaluated by multivariate techniques. Two clusters were identified, which were strongly associated with catchment characteristics. A two-step Principal Component Analysis/Factor Analysis revealed four groupings of constituents with similar spatial pattern and allowed the key catchment characteristics affecting water quality to be determined. These findings provide a more nuanced view of spatial variations in water quality compared with previous understanding and an improved basis for water quality management to protect nearshore marine ecosystem.