Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    No Preview Available
    Upcycling opportunities and potential markets for aluminium composite panels with polyethylene core (ACP-PE) cladding materials in Australia: A review
    Pilipenets, O ; Gunawardena, T ; Kin Peng Hui, F ; Nguyen, K ; Mendis, P ; Aye, L (Elsevier BV, 2022-11-28)
    Many buildings worldwide have high fire-risk materials as part of their cladding. As governments in Australia strive to make buildings safer, it is expected that a large volume of end-of-life dangerous cladding will be replaced with safer materials. This high volume of hazardous materials might be upcycled into value-added products. This article presents a systematic market analysis and literature review in identifying current and potential uses for the raw materials used in hazardous ACP-PE cladding. The most promising areas were identified to be non-food-contact packaging (US$228 M p.a.), non-pressure pipes (US$30 M p.a.), footwear (US$5.29 M p.a.) and 3D printer filament (US$2.73 M p.a.)
  • Item
    Thumbnail Image
    Airborne and impact sound performance of modern lightweight timber buildings in the Australian construction industry
    Jayalath, A ; Navaratnam, S ; Gunawardena, T ; Mendis, P ; Aye, L (Elsevier BV, 2021-12)
    Timber usage in the Australian construction industry has significantly increased due to its strength, aesthetic properties and extended allowances recently introduced in building codes. However, issues with acoustic performance of lightweight timber buildings were reported due to their inherit product variability and varying construction methods. This article reviews the recent literature on the transmissions of impact and airborne sounds, flanking transmission of timber buildings, and the state of computer prediction tools with reference to the Australian practice. An in-depth analysis of issues and an objective discussion related to acoustic performance of timber buildings are presented. Timber is a lightweight material and shows low airborne sound resistance in low frequency range. Attenuation of sound transmission with addition of mass, layer isolation, different products like cross-laminated timber and prefabrication are discussed. Challenges in measuring sound transmissions and reproducibility of results in low frequency ranges are discussed. Well-defined measurement protocols and refined computer simulation methods are required. The serviceability design criteria for modern lightweight timber applications in Australia need to be re-evaluated in the area of impact generated sound. Developing computer tools to predict airborne and impact sound transmission in lightweight timber buildings is quite challenging as several components such as timber members and complex connections with varying stiffnesses are non-homogeneous by nature. Further, there is a lack of experimentally validated and computationally efficient tools to predict the sound transmission in timber buildings. Computer prediction tools need to be developed with a focus on mid-frequency transmission over flanks and low-frequency transmission of timber and prefabricated buildings.
  • Item
    Thumbnail Image
    Effective use of offsite manufacturing for public infrastructure projects in Australia
    Gunawardena, D ; Mendis, P ; Ngo, D ; Rismanchi, B ; Aye, L (ICE Publishing, 2019)
    Prefabrication and offsite manufacturing have featured in various forms in an in-situ based construction industry for many decades. Scarcity of both human and material resources is challenging the future of traditional construction practices. Due to its many benefits such as speed of project delivery, minimum work on site, minimised construction waste and higher quality assurance, offsite manufacturing is gradually evolving into an essential technology in the construction industry. As a result of re-cent government initiatives, Australia is seeing a considerable increase in the use of offsite manufacturing and prefabricated modular technologies in delivering public infrastructure projects such as schools, healthcare facilities, and public transport facilities. Such projects are ably supported by academic research collaborating with the industry to ensure that the outcomes keep improving to achieve the highest quality and functionality. This paper discusses how multidisciplinary research addresses issues such as structural performance, construction technology, design for manufacturing and assembly and indoor environ-mental quality for the delivery of such public infrastructure projects. These projects have set an example in how offsite manufacturing supported by academic research can be beneficial for effectively delivering the greater good to the society.
  • Item
    Thumbnail Image
    A holistic model for designing and optimising sustainable prefabricated modular buildings
    Gunawardena, DS ; Ngo, TD ; Mendis, PA ; Aye, L ; Crawford, RH ; Alfano, JA (University of Moratuwa, 2012)
  • Item
    Thumbnail Image
    An optimum construction strategy for multi-story residential prefabricated modular buildings
    Thalpe Guruge, ; Samarasinghe, ; Gunawardena, ; Nguyen, T ; Mendis, P ; Ngo, T ; Aye, L (ZEMCH Network, 2018-01-29)
    Prefabrication is recognised as the way forward in building construction by the industry as it delivers quality yet affordable mass customisable houses faster than traditional on-site construction. The prefabrication of multi-story buildings transforms traditional construction into off-site manufacturing of repetitive components. Currently there are three main structural systems being adopted for modular multi-story buildings; 1) Building with a rigid in-situ central core to which the modules are connected, 2) A podium structure which acts as a base where modules are placed on top of it, 3) Fully modular structure with strategically placed load bearing modules. Current investigations on these systems focus on improving their benefits such as construction time, cost, safety and quality based on one variable at a time. However, there is a lack of studies with a holistic approach to identify the optimum structural system. This paper aims to define an Optimum Modular System Index (OMI) which will be based upon three main indices; Assembly cost penalty Index (ACPI), Onsite handling cost penalty Index (HCPI) and Concrete cost penalty Index (CCPI). Determination of OMI is expected to provide a framework to identify the optimum construction system for multi-story residential prefabricated modular buildings.
  • Item
    Thumbnail Image
    Sustainable Prefabricated Modular Buildings
    Gunawardena, D ; Mendis, P ; Ngo, D ; Aye, L ; Alfano, J ; Dissanayake, R (ICSB, 2014)
    Economy, speed of construction and improved environmental performance are critical variables that challenge the modern construction industry to strike a balance between. Employing innovative prefabricated modular structures is one key strategy used to achieve these goals. Therefore, there is an increasing demand for detailed scientific research that deals with the potential environmental benefits of prefabrication, particularly in areas of embodied energy savings resulting from waste reduction and improved efficiency of material usage. This paper gives a brief overview of prefabricated modular structures and aims to highlight the sustainability characteristics of this technology compared to conventional construction methods. A case study was carried out on an eight-storey, residential building. It was found that a steel-structured prefabricated system resulted in a significantly reduced material consumption of up to 78% by mass compared to conventional concrete construction. However, the prefabricated steel building resulted in an increase in embodied energy compared to the concrete building mainly due to the inherent characteristics of steel manufacturing processes. This form of construction has the potential to contribute significantly towards improved environmental sustainability in the construction industry while providing fast outputs with value for the investments.
  • Item
    Thumbnail Image
    BIM and modular MEP systems for super-tall and mega-tall buildings
    Samarasinghe, T ; Mendis, P ; Aye, L ; Gunawardena, D ; Karunaratne, R (University of Peradeniya, 2017-12-07)
    Mechanical, Electrical and Plumbing (MEP) work in high-rise construction can be very challenging due to the different crews involved during installation. Conflicts between the crews generally cause delays in project schedule and result in additional cost due to rework. This study will identify the MEP conflicts in high-rise construction through observations made by the author during the time spent in case study projects. This study focuses on the use of Modular MEP systems in high-rise construction to eliminate the current conflicts. Traditional MEP construction process was reviewed to identify changes to the process when using modular MEP systems. Challenges in implementing modular MEP in high- rise construction is discussed and an implementation strategy is proposed. Role of Building Information Modelling (BIM) in modular MEP construction is highlighted in the study and its involvement during different stages of the modularisation process is discussed.
  • Item
    Thumbnail Image
    Time-efficient post-disaster housing reconstruction with prefabricated modular structures
    Gunawardena, T ; Tuan, N ; Mendis, P ; Aye, L ; Crawford, RH (Open House International Association, 2014-09-01)
    With many natural disasters such as earthquakes, cyclones, bushfires and tsunamis destroying human habitats around the world, post-disaster housing reconstruction has become a critical topic. The current practice of post-disaster recon- struction consists of various approaches that carry affected homeowners from temporary shelters to permanent hous- ing. While temporary shelters may be provided within a matter of days as immediate disaster relief, permanent hous- ing can take years to complete. However, time is critical, as affected communities will need to restore their livelihoods as soon as possible. Prefabricated modular construction has the potential to drastically improve the time taken to pro- vide permanent housing. Due to this time-efficiency, which is an inherent characteristic of modular construction, it can be a desirable strategy for post-disaster housing reconstruction. This paper discusses how prefabricated modular struc- tures can provide a more time-efficient solution by analysing several present-day examples taken from published post- disaster housing reconstruction processes that have been carried out in different parts of the world. It also evaluates how other features of modular construction, such as ease of decommissioning and reusability, can add value to post- disaster reconstruction processes and organisations that contribute to the planning, design and construction stages of the reconstruction process. The suitability of modular construction will also be discussed in the context of the guidelines and best practice guides for post-disaster housing reconstruction published by international organisations. Through this analysis and discussion, it is concluded that prefabricated modular structures are a highly desirable time-efficient solu- tion to post-disaster housing reconstruction.