Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    No Preview Available
    Ductility Design of Reinforced Very-High Strength Concrete Columns (100–150 MPa) Using Curvature and Energy-Based Ductility Indices
    Kristombu Baduge, S ; Mendis, P ; Ngo, TD ; Sofi, M (Springer Science and Business Media LLC, 2019-12-01)
    The paper aims to develop theoretical expressions for the ductility design of very-high strength concrete (VHSC) (> 100 MPa) columns using curvature and a new flexural energy-based ductility approach. Eventually, the study aims to evaluates the feasibility of VHSC columns for different ductility classes, considering the limitation of providing a higher volume of transverse reinforcement due to possible steel congestion in the construction phase. An analytical program based on the experimental stress–strain relationship of confined VHSC, which is validated using experimental programs on VHSC columns, is used to evaluate the ductility of VHSC columns for different parameters such as axial load ratio, confinement pressure, longitudinal steel ratio, yield strength of transverse steel, cover area and compressive strength of concrete. The theoretical curvature ductility and flexural rotation-based energy ductility of 3200 rectangular columns were evaluated using the analytical program. Using curvature ductility and the new flexural rotation-based energy ductility for different parameters, a regression analysis is carried out to develop expressions for the ductility design of VHSC columns up to 150 MPa. Using the new definition of energy-based ductility, a new expression is developed for limited ductility design of VHSC; and it is concluded that the new approach reduces the required amount of steel confinement due to an increase in the energy ductility of VHSC at higher axial load ratios and higher strengths. The studies show that reinforced VHSC can be used for structures with nominal ductility demands.
  • Item
    Thumbnail Image
    Fire resistance of a prefabricated bushfire bunker using aerated concrete panels
    Nguyen, T ; Ngo, DT ; Tran, P ; Mendis, P ; Aye, L ; Kristombu Baduge, KS (Elsevier, 2018-06-20)
    Prefabricated lightweight aerated concrete (PLAC) panels provide low thermal conductivity, potentially high stiffness-to-weight ratios, cost-effective material and structural systems and rapid modular construction. These panels can be utilised as floor slabs or external walls for various applications in building construction. The fire performance of the PLAC panel is examined in this work for a particular case, namely a prefabricated emergency bushfire shelter, which is one of the key applications of PLAC panels. Since, bushfires have unique heating curves, standardised tests are not useful and the system needs to be tested in a manner such that the heat flux of an actual bush fire can be reproduced. In this study, the fire performance enhancement of dual-skin bushfire bunkers, which are comprised of lightweight concrete and base metal thickness (BMT) steel, are examined experimentally and validated numerically. The Speedpanel PLAC modular panel explored in this work is a lightweight wall system primarily used for acoustic and thermal insulation purposes. Burning experimental studies of a single panel and dual-skin bunkers are carried out on a full scale. The experimental results are compared with fire safety codes for building materials to identify the key areas for improvements. A fire dynamic numerical model has been developed in this work using the Fire Dynamics Simulator (FDS) to simulate the burning process of PLAC structures. Numerical results of heat production are presented in comparison with experimental observations for validating the computational model. The proposed numerical model is used to predict the fire performance of a dual-skin bushfire bunker, demonstrating the need to have at least two PLAC layers to ensure fire safety compliance.