Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 27
  • Item
  • Item
    Thumbnail Image
    Multi-Criteria Analysis of a Developed Prefabricated Footing System on Reactive Soil Foundation
    Teodosio, B ; Bonacci, F ; Seo, S ; Baduge, KSK ; Mendis, P (MDPI, 2021-11-01)
    The need for advancements in residential construction and the hazard induced by the shrink–swell reactive soil movement prompted the development of the prefabricated footing system of this study, which was assessed and compared to a conventional waffle raft using a multi-criteria analysis. The assessment evaluates the structural performance, cost efficiency, and sustainability using finite element modelling, life cycle cost analysis, and life cycle assessment, respectively. The structural performance of the developed prefabricated system was found to have reduced the deformation and cracking by approximately 40%. However, the cost, GHG emission, and embodied energy were higher in the prefabricated footing system due to the greater required amount of concrete and steel than that of the waffle raft. The cost difference between the two systems can be reduced to as low as 6% when prefabricated systems were installed in a highly reactive sites with large floor areas. The life cycle assessment further observed that the prefabricated footing systems consume up to 21% more energy and up to 18% more GHG emissions. These can significantly be compensated by reusing the developed prefabricated footing system, decreasing the GHG emission and energy consumption by 75–77% and 55–59% with respect to that of the waffle raft.
  • Item
    Thumbnail Image
    Design of prefabricated footing connection using a coupled hydro-mechanical finite element model
    Teodosio, B ; Baduge, KSK ; Mendis, P (ERNST & SOHN, 2021-11-23)
  • Item
    Thumbnail Image
    Microstructural Investigation of High-Volume Fly Ash Composites Containing Nano-Calcium Silicate Hydrate Crystals
    Zhou, Z ; Sofi, M ; Sabri, Y ; Liu, J ; Kang, S ; Mendis, P (ASCE-AMER SOC CIVIL ENGINEERS, 2021-12-01)
  • Item
    Thumbnail Image
    Effect of wind speed and direction on facade fire spread in an isolated rectangular building
    Abu-Zidan, Y ; Rathnayaka, S ; Mendis, P ; Nguyen, K (Elsevier, 2022-05-01)
    This paper investigates the influence of wind speed and direction on external fire spread in an isolated rectangular building using computational fluid dynamics models validated with wind tunnel data and facade fire tests. Two wind speeds (2 m/s, 4 m/s) are considered for each of four wind directions (0°, 45°, 90°, 180°) and compared to a reference case of no wind. Results indicate that facade fire spread is heavily influenced by the near-wall flow fields generated by the building geometry. These flow fields explain counterintuitive findings such as the upstream tilting of flames under the influence of reverse flow near the side walls. The presence of external wind was found to inhibit the initial development of facade fires, but can greatly exacerbate fire spread once the fire has fully developed. The largest fire occurred for the case of no wind (7.5 GJ in 15 min) while the smallest fire occurred for the 4 m/s diagonal wind case (2.2 GJ). An additional case with temporally varying wind conditions demonstrated a 50% increase in fire spread area compared to no wind. The study provides valuable insight into wind and fire interaction in building facades that can help improve fire safety of buildings.
  • Item
    Thumbnail Image
    Designing Post COVID-19 Buildings: Approaches for Achieving Healthy Buildings
    Navaratnam, S ; Nguyen, K ; Selvaranjan, K ; Zhang, G ; Mendis, P ; Aye, L (MDPI AG, 2022-01-12)
    The COVID-19 pandemic forced the accessibility, social gathering, lifestyle, and working environment to be changed to reduce the infection. Coronavirus spreads between people in several different ways. Small liquid particles (aerosols, respiratory droplets) from an infected person are transmitted through air and surfaces that are in contact with humans. Reducing transmission through modified heating, ventilation, and air conditioning (HVAC) systems and building design are potential solutions. A comprehensive review of the engineering control preventive measures to mitigate COVID-19 spread, healthy building design, and material was carried out. The current state-of-the-art engineering control preventive measures presented include ultraviolet germicidal irradiation (UVGI), bipolar ionization, vertical gardening, and indoor plants. They have potential to improve the indoor air quality. In addition, this article presents building design with materials (e.g., copper alloys, anti-microbial paintings) and smart technologies (e.g., automation, voice control, and artificial intelligence-based facial recognition) to mitigate the infections of communicable diseases.
  • Item
    Thumbnail Image
    Structural Health Monitoring of Bridges Using Advanced Non-destructive Testing Technique
    Maizuar, M ; Zhang, L ; Miramini, S ; Mendis, P ; Duffield, C ; Wang, CM ; Ho, JCM ; Kitipornchai, S (Springer, Singapore, 2020-01-01)
    This paper presents an integrated framework for structural health monitoring of bridges by using advanced non-destructive testing (NDT) technique in conjunction with computational modelling. First, the structural characteristics of the Eltham Trestle Bridge under train loading were monitored using the combination of the 3D optical measurement system and IBIS-S. The results demonstrate that, in conjunction with computational modelling, the NDT can capture the structural health conditions of the bridge by analysing the natural frequencies and deformation profiles of the critical members of the bridges. Then, the developed framework also takes into account the impact of extreme events (e.g. truck impacts and earthquakes) by using a reliability-based model. Finally, using the Montague Street Bridge as a case study, it shows that proposed framework has the capability of predicting the residual life of a bridge subject to both progressive deterioration and extreme events throughout its service life.
  • Item
    No Preview Available
  • Item
    No Preview Available
    Flexural Capacity Prediction Model For Steel Fibre-Reinforced Concrete Beams
    Zhong, A ; Sofi, M ; Lumantarna, E ; Zhou, Z ; Mendis, P (SPRINGER, 2021-06-03)
    Abstract Steel fibre (SF) reinforcement has been shown to improve the ductility of high strength concrete (HSC), which is known to be brittle. Research conducted to date on steel fibre reinforced concrete and its effects have emphasised post-failure performance and cracking mechanism. The difficulty in predicting the behaviour of fibres is due to the randomly distributed nature of the material within the matrix leading to a probability distribution of results. Published literature has shown a benefit of adding steel fibres in terms of the ductility performance of structures. Clearly, there is a potential for such material as replacement of conventional steel reinforcement. This study proposes a theoretical model of evaluating the potential of using steel fibres as a replacement material to conventional steel reinforcement bars based on the case study, laboratory and theoretical methodologies. The compressive strength of the concrete at key dates, the effective fibre cross-sectional were measured, and a prediction model was created based on the measurement parameters. The use of four-point flexural testing, standard compressive testing and software image modelling provided the study with relevant data used to analyse and compare to the prediction. Greater ductility performance and toughness were observed with increased fibre volumes, confirming proposed predictions and conclusion drawn from published literature. No consistent or conclusive correlations between fibre volumes and the compressive strength of concrete were found. A relationship between fibre volumes and predicted moment capacities of steel fibre reinforced concrete beams was found based on the proposed theoretical flexural analysis method.
  • Item
    No Preview Available
    Residual stress-strain relationship for the biochar-based mortar after exposure to elevated temperature
    Navaratnam, S ; Wijaya, H ; Rajeev, P ; Mendis, P ; Nguyen, K (ELSEVIER, 2021-04-02)