Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Equifinality and Flux Mapping: A New Approach to Model Evaluation and Process Representation Under Uncertainty
    Khatami, S ; Peel, MC ; Peterson, TJ ; Western, AW (AMER GEOPHYSICAL UNION, 2019-11)
    Abstract Uncertainty analysis is an integral part of any scientific modeling, particularly within the domain of hydrological sciences given the various types and sources of uncertainty. At the center of uncertainty rests the concept of equifinality, that is, reaching a given endpoint (finality) through different pathways. The operational definition of equifinality in hydrological modeling is that various model structures and/or parameter sets (i.e., equal pathways) are equally capable of reproducing a similar (not necessarily identical) hydrological outcome (i.e., finality). Here we argue that there is more to model equifinality than model structures/parameters, that is, other model components can give rise to model equifinality and/or could be used to explore equifinality within model space. We identified six facets of model equifinality, namely, model structure, parameters, performance metrics, initial and boundary conditions, inputs, and internal fluxes. Focusing on model internal fluxes, we developed a methodology called flux mapping that has fundamental implications in understanding and evaluating model process representation within the paradigm of multiple working hypotheses. To illustrate this, we examine the equifinality of runoff fluxes of a conceptual rainfall‐runoff model for a number of different Australian catchments. We demonstrate how flux maps can give new insights into the model behavior that cannot be captured by conventional model evaluation methods. We discuss the advantages of flux space, as a subspace of the model space not usually examined, over parameter space. We further discuss the utility of flux mapping in hypothesis generation and testing, extendable to any field of scientific modeling of open complex systems under uncertainty.
  • Item
    No Preview Available
    Equifinality and process-based modelling
    Khatami, S ; Peel, M ; Peterson, T ; Western, A (American Geophysical Union, 2018-11-26)
    Equifinality is understood as one of the fundamental difficulties in the study of open complex systems, including catchment hydrology. A review of the hydrologic literature reveals that the term equifinality has been widely used, but in many cases inconsistently and without coherent recognition of the various facets of equifinality, which can lead to ambiguity but also methodological fallacies. Therefore, in this study we first characterise the term equifinality within the context of hydrological modelling by reviewing the genesis of the concept of equifinality and then presenting a theoretical framework. During past decades, equifinality has mainly been studied as a subset of aleatory (arising due to randomness) uncertainty and for the assessment of model parameter uncertainty. Although the connection between parameter uncertainty and equifinality is undeniable, we argue there is more to equifinality than just aleatory parameter uncertainty. That is, the importance of equifinality and epistemic uncertainty (arising due to lack of knowledge) and their implications is overlooked in our current practice of model evaluation. Equifinality and epistemic uncertainty in studying, modelling, and evaluating hydrologic processes are treated as if they can be simply discussed in (or often reduced to) probabilistic terms (as for aleatory uncertainty). The deficiencies of this approach to conceptual rainfall-runoff modelling are demonstrated for selected Australian catchments by examination of parameter and internal flux distributions and interactions within SIMHYD. On this basis, we present a new approach that expands equifinality concept beyond model parameters to inform epistemic uncertainty. The new approach potentially facilitates the identification and development of more physically plausible models and model evaluation schemes particularly within the multiple working hypotheses framework, and is generalisable to other fields of environmental modelling as well.
  • Item
    Thumbnail Image
    Simulating runoff under changing climatic conditions: Revisiting an apparent deficiency of conceptual rainfall-runoff models
    Fowler, KJA ; Peel, MC ; Western, AW ; Zhang, L ; Peterson, TJ (AMER GEOPHYSICAL UNION, 2016-03)
    Abstract Hydrologic models have potential to be useful tools in planning for future climate variability. However, recent literature suggests that the current generation of conceptual rainfall runoff models tend to underestimate the sensitivity of runoff to a given change in rainfall, leading to poor performance when evaluated over multiyear droughts. This research revisited this conclusion, investigating whether the observed poor performance could be due to insufficient model calibration and evaluation techniques. We applied an approach based on Pareto optimality to explore trade‐offs between model performance in different climatic conditions. Five conceptual rainfall runoff model structures were tested in 86 catchments in Australia, for a total of 430 Pareto analyses. The Pareto results were then compared with results from a commonly used model calibration and evaluation method, the Differential Split Sample Test. We found that the latter often missed potentially promising parameter sets within a given model structure, giving a false negative impression of the capabilities of the model. This suggests that models may be more capable under changing climatic conditions than previously thought. Of the 282[347] cases of apparent model failure under the split sample test using the lower [higher] of two model performance criteria trialed, 155[120] were false negatives. We discuss potential causes of remaining model failures, including the role of data errors. Although the Pareto approach proved useful, our aim was not to suggest an alternative calibration strategy, but to critically assess existing methods of model calibration and evaluation. We recommend caution when interpreting split sample results.