Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Towards Understanding Evapotranspiration Shifts Under a Drying Climate
    Gardiya Weligamage, H ; Fowler, K ; Peterson, T ; Saft, M ; Ryu, D ; Peel, M (Copernicus, 2022-03-28)
    Around 60 percent of terrestrial precipitation on the global average transforms into evapotranspiration. However, reliable estimation of actual evapotranspiration (AET) is challenging as it depends on multiple climatic and biophysical factors. Despite developments such as remotely sensed AET products, AET responses to prolonged drought is still poorly understood. Therefore, this study focuses on understanding long-term changes and variability of AET prior to and during the Millennium Drought in Victoria, Australia. We also investigate the capability of commonly used rainfall-runoff models to simulate AET under multiyear droughts. Therefore, we employ simple sensitivity analysis to examine four different water balance approaches between pre-drought and drought periods in six different study catchments in Victoria. The first water balance approach is the simplest long-term water balance approach, partitioning long-term precipitation into evapotranspiration and runoff. The second water balance approach adopts a long-term change in storage to the water balance during the Millennium Drought by employing regional-scale change in GRACE estimates derived from Fowler et al. (2020). The third and fourth water balances are based on simulations from SIMHYD and SACRAMENTO. Surprisingly, the adoption of long-term change in storage during the Millennium Drought indicates that the annual rates of pre-drought AET were largely maintained throughout the drought; i.e. the rate was relatively constant with time. This suggests that AET gets priority over streamflow following a drying shift in precipitation partitioning; resulting in a relatively constant AET under multiyear drought. In contrast, the rainfall-runoff models underestimated AET during the drought compared to both water balance approaches. These results broadly acknowledge the need for model improvements to provide more realistic AET estimates under future drying climates and provide a new perspective on recent hydrological phenomena such as changing rainfall-runoff relationships in these regions. Furthermore, this sensitivity analysis was augmented and confirmed by a regional-scale water balance approach.
  • Item
    No Preview Available
    Equifinality and process-based modelling
    Khatami, S ; Peel, M ; Peterson, T ; Western, A (American Geophysical Union, 2018-11-26)
    Equifinality is understood as one of the fundamental difficulties in the study of open complex systems, including catchment hydrology. A review of the hydrologic literature reveals that the term equifinality has been widely used, but in many cases inconsistently and without coherent recognition of the various facets of equifinality, which can lead to ambiguity but also methodological fallacies. Therefore, in this study we first characterise the term equifinality within the context of hydrological modelling by reviewing the genesis of the concept of equifinality and then presenting a theoretical framework. During past decades, equifinality has mainly been studied as a subset of aleatory (arising due to randomness) uncertainty and for the assessment of model parameter uncertainty. Although the connection between parameter uncertainty and equifinality is undeniable, we argue there is more to equifinality than just aleatory parameter uncertainty. That is, the importance of equifinality and epistemic uncertainty (arising due to lack of knowledge) and their implications is overlooked in our current practice of model evaluation. Equifinality and epistemic uncertainty in studying, modelling, and evaluating hydrologic processes are treated as if they can be simply discussed in (or often reduced to) probabilistic terms (as for aleatory uncertainty). The deficiencies of this approach to conceptual rainfall-runoff modelling are demonstrated for selected Australian catchments by examination of parameter and internal flux distributions and interactions within SIMHYD. On this basis, we present a new approach that expands equifinality concept beyond model parameters to inform epistemic uncertainty. The new approach potentially facilitates the identification and development of more physically plausible models and model evaluation schemes particularly within the multiple working hypotheses framework, and is generalisable to other fields of environmental modelling as well.