Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    Thumbnail Image
    A synthetic study to evaluate the utility of hydrological signatures for calibrating a base flow separation filter
    Su, C-H ; Peterson, TJ ; Costelloe, JF ; Western, AW (AMER GEOPHYSICAL UNION, 2016-08-01)
  • Item
    Thumbnail Image
    Can we manage groundwater? A method to determine the quantitative testability of groundwater management plans
    White, EK ; Peterson, TJ ; Costelloe, J ; Western, AW ; Carrara, E (AMER GEOPHYSICAL UNION, 2016-06-01)
  • Item
    Thumbnail Image
    On the structural limitations of recursive digital filters for base flow estimation
    Su, C-H ; Costelloe, JF ; Peterson, TJ ; Western, AW (AMER GEOPHYSICAL UNION, 2016-06-01)
  • Item
    Thumbnail Image
    Equifinality and Flux Mapping: A New Approach to Model Evaluation and Process Representation Under Uncertainty
    Khatami, S ; Peel, MC ; Peterson, TJ ; Western, AW (AMER GEOPHYSICAL UNION, 2019-11-12)
  • Item
    Thumbnail Image
    Joint Estimation of Gross Recharge, Groundwater Usage, and Hydraulic Properties within HydroSight
    Peterson, TJ ; Fulton, S (Wiley, 2019-11-01)
    Groundwater management decisions are often founded upon estimates of aquifer hydraulic properties, recharge and the rate of groundwater usage. Too often hydraulic properties are unavailable, recharge estimates are very uncertain, and usage is unmetered or infrequently metered over only recent years or estimated using numerical groundwater models decoupled from the drivers of drawdown. This paper extends the HydroSight groundwater time‐series package ( http://peterson‐tim‐j.github.io/HydroSight/) to allow the joint estimation of gross recharge, transmissivity, storativity, and daily usage at multiple production bores. A genetic evolutionary scheme was extended from estimating time‐series model parameters to also estimating time series of usage that honor metered volumes at each production bore and produces (1) the best fit with the observed hydrograph and (2) plausible estimates of actual evapotranspiration and hence recharge. The reliability of the approach was rigorously tested. Repeated calibration of models for four bores produced estimates of transmissivity, storativity, and mean recharge that varied by a factor of 0.22‐0.32, 0.13‐0.2, and 0.03‐0.48, respectively, when recharge boundary effects were low and the error in monthly, quarterly, and biannual metered usage was generally <10%. Application to the 30 observation bores within the Warrion groundwater management area (Australia), produced a coefficient of efficiency of ≥0.80 at 22 bores and ≥0.90 at 12 bores. The aquifer transmissivity and storativity were reasonably estimated, and were consistent with independent estimates, while mean gross recharge may be slightly overestimated. Overall, the approach allows greater insights from the available data and provides opportunity for the exploration of usage and climatic scenarios.
  • Item
    Thumbnail Image
    Statistical Interpolation of Groundwater Hydrographs
    Peterson, TJ ; Western, AW (AMER GEOPHYSICAL UNION, 2018-07-01)
  • Item
  • Item
    No Preview Available
    Equifinality and process-based modelling
    Khatami, S ; Peel, M ; Peterson, T ; Western, A (American Geophysical Union, 2018-11-26)
    Equifinality is understood as one of the fundamental difficulties in the study of open complex systems, including catchment hydrology. A review of the hydrologic literature reveals that the term equifinality has been widely used, but in many cases inconsistently and without coherent recognition of the various facets of equifinality, which can lead to ambiguity but also methodological fallacies. Therefore, in this study we first characterise the term equifinality within the context of hydrological modelling by reviewing the genesis of the concept of equifinality and then presenting a theoretical framework. During past decades, equifinality has mainly been studied as a subset of aleatory (arising due to randomness) uncertainty and for the assessment of model parameter uncertainty. Although the connection between parameter uncertainty and equifinality is undeniable, we argue there is more to equifinality than just aleatory parameter uncertainty. That is, the importance of equifinality and epistemic uncertainty (arising due to lack of knowledge) and their implications is overlooked in our current practice of model evaluation. Equifinality and epistemic uncertainty in studying, modelling, and evaluating hydrologic processes are treated as if they can be simply discussed in (or often reduced to) probabilistic terms (as for aleatory uncertainty). The deficiencies of this approach to conceptual rainfall-runoff modelling are demonstrated for selected Australian catchments by examination of parameter and internal flux distributions and interactions within SIMHYD. On this basis, we present a new approach that expands equifinality concept beyond model parameters to inform epistemic uncertainty. The new approach potentially facilitates the identification and development of more physically plausible models and model evaluation schemes particularly within the multiple working hypotheses framework, and is generalisable to other fields of environmental modelling as well.
  • Item
    No Preview Available
    IMPACTS OF HYDROLOGICAL ALTERATIONS ON WATER QUALITY
    Arora, M ; Casas-Mulet, R ; Costelloe, JF ; Peterson, TJ ; McCluskey, AH ; Stewardson, MJ ; Horne, AC ; Webb, JA ; Stewardson, MJ ; Richter, B ; Acreman, M (ACADEMIC PRESS LTD-ELSEVIER SCIENCE LTD, 2017-01-01)
  • Item
    Thumbnail Image
    Global optimisation of chiller sequencing and load balancing using Shuffled Complex Evolution
    Stewart, I ; Aye, L ; Peterson, T (International Building Performance Simulation Association & AIRAH, 2017-11-15)
    A new model has been developed to optimise the sequencing and load balancing of chillers in the central plants of commercial buildings with multiple water-cooled chillers. The model uses the Shuffled Complex Evolution optmisation algorithm to minimise the total energy consumptions of chillers and pumps by maximising the whole system (central plant) coefficient of performance under a known discrete cooling load. Two commercial buildings in Melbourne’s CBD were simulated as case studies to assess the validity and effectiveness of the model. The control strategies identified by the model performed better than the existing configuration in both cases, reducing energy consumption by 12.2% and 16.6% when compared to the observed energy data for 2016.