Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 36
  • Item
    Thumbnail Image
    Multi-scale analysis of bias correction of soil moisture
    Su, C-H ; Ryu, D ( 2014-07-29)
    Abstract. Remote sensing, in situ networks and models are now providing unprecedented information for environmental monitoring. To conjunctively use multi-source data nominally representing an identical variable, one must resolve biases existing between these disparate sources, and the characteristics of the biases can be non-trivial due to spatiotemporal variability of the target variable, inter-sensor differences with variable measurement supports. One such example is of soil moisture (SM) monitoring. Triple collocation (TC) based bias correction is a powerful statistical method that increasingly being used to address this issue but is only applicable to the linear regime, whereas nonlinear method of statistical moment matching is susceptible to unintended biases originating from measurement error. Since different physical processes that influence SM dynamics may be distinguishable by their characteristic spatiotemporal scales, we propose a multi-time-scale linear bias model in the framework of a wavelet-based multi-resolution analysis (MRA). The joint MRA-TC analysis was applied to demonstrate scale-dependent biases between in situ, remotely-sensed and modelled SM, the influence of various prospective bias correction schemes on these biases, and lastly to enable multi-scale bias correction and data adaptive, nonlinear de-noising via wavelet thresholding.
  • Item
    Thumbnail Image
    Improving operational flood ensemble prediction by the assimilation of satellite soil moisture: comparison between lumped and semi-distributed schemes
    Alvarez-Garreton, C ; Ryu, D ; Western, AW ; Su, C-H ; Crow, WT ; Robertson, DE ; Leahy, C ( 2014-09-23)
    Abstract. Assimilation of remotely sensed soil moisture data (SM–DA) to correct soil water stores of rainfall-runoff models has shown skill in improving streamflow prediction. In the case of large and sparsely monitored catchments, SM–DA is a particularly attractive tool. Within this context, we assimilate active and passive satellite soil moisture (SSM) retrievals using an ensemble Kalman filter to improve operational flood prediction within a large semi-arid catchment in Australia (>40 000 km2). We assess the importance of accounting for channel routing and the spatial distribution of forcing data by applying SM–DA to a lumped and a semi-distributed scheme of the probability distributed model (PDM). Our scheme also accounts for model error representation and seasonal biases and errors in the satellite data. Before assimilation, the semi-distributed model provided more accurate streamflow prediction (Nash–Sutcliffe efficiency, NS = 0.77) than the lumped model (NS = 0.67) at the catchment outlet. However, this did not ensure good performance at the "ungauged" inner catchments. After SM–DA, the streamflow ensemble prediction at the outlet was improved in both the lumped and the semi-distributed schemes: the root mean square error of the ensemble was reduced by 27 and 31%, respectively; the NS of the ensemble mean increased by 7 and 38%, respectively; the false alarm ratio was reduced by 15 and 25%, respectively; and the ensemble prediction spread was reduced while its reliability was maintained. Our findings imply that even when rainfall is the main driver of flooding in semi-arid catchments, adequately processed SSM can be used to reduce errors in the model soil moisture, which in turn provides better streamflow ensemble prediction. We demonstrate that SM–DA efficacy is enhanced when the spatial distribution in forcing data and routing processes are accounted for. At ungauged locations, SM–DA is effective at improving streamflow ensemble prediction, however, the updated prediction is still poor since SM–DA does not address systematic errors in the model.
  • Item
    Thumbnail Image
    Estimating Annual Water Storage Variations Using Microwave-based Soil Moisture Retrievals
    Crow, WT ; Han, E ; Ryu, D ; Hain, CR ; Anderson, MC ( 2016-11-21)
    Abstract. Due to their shallow vertical support, remotely-sensed surface soil moisture retrievals are commonly regarded as being of limited value for water budget applications requiring the characterization of temporal variations in total terrestrial water storage (S). However, advances in our ability to estimate evapotranspiration remotely now allow for the direct evaluation of approaches for quantifying annual variations in S via water budget closure considerations. By applying an annual water budget analysis within a series of medium-scale (2,000–10,000 km2) basins within the United States, we demonstrate that, despite their clear theoretical limitations, surface soil moisture retrievals derived from passive microwave remote sensing contain significant information concerning relative inter-annual variations in S. This suggests the possibility of using (relatively) higher-resolution microwave remote sensing to enhance the spatial resolution of S estimates acquired from gravity remote sensing. However, challenging calibration issues regarding the relationship between S and surface soil moisture must be resolved before the approach can be used for absolute water budget closure.
  • Item
    No Preview Available
    A predictive model for spatio-temporal variability in stream water quality
    Guo, D ; Lintern, A ; Webb, JA ; Ryu, D ; Bende-Michl, U ; Liu, S ; Western, AW ( 2019-07-23)
    Abstract. Degraded water quality in rivers and streams can have large economic, societal and ecological impacts. Stream water quality can be highly variable both over space and time. To develop effective management strategies for riverine water quality, it is critical to be able to predict these spatio-temporal variabilities. However, our current capacity to model stream water quality is limited, particularly at large spatial scales across multiple catchments. This is due to a lack of understanding of the key controls that drive spatio-temporal variabilities of stream water quality. To address this, we developed a Bayesian hierarchical statistical model to analyse the spatio-temporal variability in stream water quality across the state of Victoria, Australia. The model was developed based on monthly water quality monitoring data collected at 102 sites over 21 years. The modelling focused on six key water quality constituents: total suspended solids (TSS), total phosphorus (TP), filterable reactive phosphorus (FRP), total Kjeldahl nitrogen (TKN), nitrate-nitrite (NOx), and electrical conductivity (EC). Among the six constituents, the models explained varying proportions of variation in water quality. EC was the most predictable constituent (88.6 % variability explained) and FRP had the lowest predictive performance (19.9 % variability explained). The models were validated for multiple sets of calibration/validation sites and showed robust performance. Temporal validation revealed a systematic change in the TSS model performance across most catchments since an extended drought period in the study region, highlighting potential shifts in TSS dynamics over the drought. Further improvements in model performance need to focus on: (1) alternative statistical model structures to improve fitting for the low concentration data, especially records below the detection limit; and (2) better representation of non-conservative constituents by accounting for important biogeochemical processes. We also recommend future improvements in water quality monitoring programs which can potentially enhance the model capacity, via: (1) improving the monitoring and assimilation of high-frequency water quality data; and (2) improving the availability of data to capture land use and management changes over time.
  • Item
    Thumbnail Image
    Very early onset of amiodarone-induced pulmonary toxicity.
    Lee, W ; Ryu, DR ; Han, S-S ; Ryu, S-W ; Cho, BR ; Kwon, H ; Kim, BR (The Korean Society of Cardiology, 2013-10)
    Amiodarone is a widely used antiarrhythmic agent. Among its various adverse effects, amiodarone-induced pulmonary toxicity (APT) is the most life threatening complication, which has been described mostly in patients who have been in treatment with high accumulative doses for a long duration of time. However, amiodarone therapy in short-term duration induced APT was rarely reported. We describe a case of a 54-year-old man who is presented with symptoms of APT after a few days of therapy for post-myocardial infarction ventricular tachycardia. For early diagnosis and successful treatment, awareness and high suspicion of this rare type of early onset APT is crucial in patients with amiodarone therapy.
  • Item
    Thumbnail Image
    Endoplasmic reticulum stress promotes LIPIN2-dependent hepatic insulin resistance.
    Ryu, D ; Seo, W-Y ; Yoon, Y-S ; Kim, Y-N ; Kim, SS ; Kim, H-J ; Park, T-S ; Choi, CS ; Koo, S-H (American Diabetes Association, 2011-04)
    OBJECTIVE: Diet-induced obesity (DIO) is linked to peripheral insulin resistance-a major predicament in type 2 diabetes. This study aims to identify the molecular mechanism by which DIO-triggered endoplasmic reticulum (ER) stress promotes hepatic insulin resistance in mouse models. RESEARCH DESIGN AND METHODS: C57BL/6 mice and primary hepatocytes were used to evaluate the role of LIPIN2 in ER stress-induced hepatic insulin resistance. Tunicamycin, thapsigargin, and lipopolysaccharide were used to invoke acute ER stress conditions. To promote chronic ER stress, mice were fed with a high-fat diet for 8-12 weeks. To verify the role of LIPIN2 in hepatic insulin signaling, adenoviruses expressing wild-type or mutant LIPIN2, and shRNA for LIPIN2 were used in animal studies. Plasma glucose, insulin levels as well as hepatic free fatty acids, diacylglycerol (DAG), and triacylglycerol were assessed. Additionally, glucose tolerance, insulin tolerance, and pyruvate tolerance tests were performed to evaluate the metabolic phenotype of these mice. RESULTS: LIPIN2 expression was enhanced in mouse livers by acute ER stress-inducers or by high-fat feeding. Transcriptional activation of LIPIN2 by ER stress is mediated by activating transcription factor 4, as demonstrated by LIPIN2 promoter assays, Western blot analyses, and chromatin immunoprecipitation assays. Knockdown of hepatic LIPIN2 in DIO mice reduced fasting hyperglycemia and improved hepatic insulin signaling. Conversely, overexpression of LIPIN2 impaired hepatic insulin signaling in a phosphatidic acid phosphatase activity-dependent manner. CONCLUSIONS: These results demonstrate that ER stress-induced LIPIN2 would contribute to the perturbation of hepatic insulin signaling via a DAG-protein kinase C ε-dependent manner in DIO mice.
  • Item
    Thumbnail Image
    Loss of Sirt1 function improves intestinal anti-bacterial defense and protects from colitis-induced colorectal cancer.
    Lo Sasso, G ; Ryu, D ; Mouchiroud, L ; Fernando, SC ; Anderson, CL ; Katsyuba, E ; Piersigilli, A ; Hottiger, MO ; Schoonjans, K ; Auwerx, J ; Papa, S (Public Library of Science (PLoS), 2014)
    Dysfunction of Paneth and goblet cells in the intestine contributes to inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). Here, we report a role for the NAD+-dependent histone deacetylase SIRT1 in the control of anti-bacterial defense. Mice with an intestinal specific Sirt1 deficiency (Sirt1int-/-) have more Paneth and goblet cells with a consequent rearrangement of the gut microbiota. From a mechanistic point of view, the effects on mouse intestinal cell maturation are mediated by SIRT1-dependent changes in the acetylation status of SPDEF, a master regulator of Paneth and goblet cells. Our results suggest that targeting SIRT1 may be of interest in the management of IBD and CAC.
  • Item
    Thumbnail Image
    Antibiotic use and abuse: a threat to mitochondria and chloroplasts with impact on research, health, and environment.
    Wang, X ; Ryu, D ; Houtkooper, RH ; Auwerx, J (Wiley, 2015-10)
    Recently, several studies have demonstrated that tetracyclines, the antibiotics most intensively used in livestock and that are also widely applied in biomedical research, interrupt mitochondrial proteostasis and physiology in animals ranging from round worms, fruit flies, and mice to human cell lines. Importantly, plant chloroplasts, like their mitochondria, are also under certain conditions vulnerable to these and other antibiotics that are leached into our environment. Together these endosymbiotic organelles are not only essential for cellular and organismal homeostasis stricto sensu, but also have an important role to play in the sustainability of our ecosystem as they maintain the delicate balance between autotrophs and heterotrophs, which fix and utilize energy, respectively. Therefore, stricter policies on antibiotic usage are absolutely required as their use in research confounds experimental outcomes, and their uncontrolled applications in medicine and agriculture pose a significant threat to a balanced ecosystem and the well-being of these endosymbionts that are essential to sustain health.
  • Item
    Thumbnail Image
    Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis.
    Chung, HK ; Ryu, D ; Kim, KS ; Chang, JY ; Kim, YK ; Yi, H-S ; Kang, SG ; Choi, MJ ; Lee, SE ; Jung, S-B ; Ryu, MJ ; Kim, SJ ; Kweon, GR ; Kim, H ; Hwang, JH ; Lee, C-H ; Lee, S-J ; Wall, CE ; Downes, M ; Evans, RM ; Auwerx, J ; Shong, M (Rockefeller University Press, 2017-01-02)
    Reduced mitochondrial electron transport chain activity promotes longevity and improves energy homeostasis via cell-autonomous and -non-autonomous factors in multiple model systems. This mitohormetic effect is thought to involve the mitochondrial unfolded protein response (UPRmt), an adaptive stress-response pathway activated by mitochondrial proteotoxic stress. Using mice with skeletal muscle-specific deficiency of Crif1 (muscle-specific knockout [MKO]), an integral protein of the large mitoribosomal subunit (39S), we identified growth differentiation factor 15 (GDF15) as a UPRmt-associated cell-non-autonomous myomitokine that regulates systemic energy homeostasis. MKO mice were protected against obesity and sensitized to insulin, an effect associated with elevated GDF15 secretion after UPRmt activation. In ob/ob mice, administration of recombinant GDF15 decreased body weight and improved insulin sensitivity, which was attributed to elevated oxidative metabolism and lipid mobilization in the liver, muscle, and adipose tissue. Thus, GDF15 is a potent mitohormetic signal that safeguards against the onset of obesity and insulin resistance.
  • Item
    Thumbnail Image
    Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice.
    Gariani, K ; Menzies, KJ ; Ryu, D ; Wegner, CJ ; Wang, X ; Ropelle, ER ; Moullan, N ; Zhang, H ; Perino, A ; Lemos, V ; Kim, B ; Park, Y-K ; Piersigilli, A ; Pham, TX ; Yang, Y ; Ku, CS ; Koo, SI ; Fomitchova, A ; Cantó, C ; Schoonjans, K ; Sauve, AA ; Lee, J-Y ; Auwerx, J (Ovid Technologies (Wolters Kluwer Health), 2016-04)
    UNLABELLED: With no approved pharmacological treatment, nonalcoholic fatty liver disease (NAFLD) is now the most common cause of chronic liver disease in Western countries and its worldwide prevalence continues to increase along with the growing obesity epidemic. Here, we show that a high-fat high-sucrose (HFHS) diet, eliciting chronic hepatosteatosis resembling human fatty liver, lowers hepatic nicotinamide adenine dinucleotide (NAD(+) ) levels driving reductions in hepatic mitochondrial content, function, and adenosine triphosphate (ATP) levels, in conjunction with robust increases in hepatic weight, lipid content, and peroxidation in C57BL/6J mice. To assess the effect of NAD(+) repletion on the development of steatosis in mice, nicotinamide riboside, a precursor of NAD(+) biosynthesis, was added to the HFHS diet, either as a preventive strategy or as a therapeutic intervention. We demonstrate that NR prevents and reverts NAFLD by inducing a sirtuin (SIRT)1- and SIRT3-dependent mitochondrial unfolded protein response, triggering an adaptive mitohormetic pathway to increase hepatic β-oxidation and mitochondrial complex content and activity. The cell-autonomous beneficial component of NR treatment was revealed in liver-specific Sirt1 knockout mice (Sirt1(hep-/-) ), whereas apolipoprotein E-deficient mice (Apoe(-/-) ) challenged with a high-fat high-cholesterol diet affirmed the use of NR in other independent models of NAFLD. CONCLUSION: Our data warrant the future evaluation of NAD(+) boosting strategies to manage the development or progression of NAFLD.