Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 35
  • Item
    Thumbnail Image
    Modelling Impacts of Environmental Water on Vegetation of a Semi-Arid Floodplain-Lakes System Using 30-Year Landsat Data
    Wu, C ; Webb, JA ; Stewardson, MJ (MDPI, 2022-02)
    River floodplains are among the most dynamic and diverse ecosystems on the planet. They are at risk of degradation due to river regulation and climate change. Environmental water has been delivered to floodplains to maintain environmental health by mimicking natural floods. It is important to understand the long-term effects of environmental water to floodplain vegetation to support its management. This study used Normalized Differences Vegetation index (NDVI) from the 30-year Landsat datasets of the Hattah Lakes floodplain in Australia to investigate the drivers of vegetation dynamics. We developed generalized additive mixed models (GAMM) to model responses of vegetation to environmental water, natural floods, precipitation, temperature, and distance to water across multiple spatial and temporal scales. We found the effect of environmental water on floodplain vegetation to be quite different from that of natural floods in both space and time. Vegetation in most areas of Hattah Lakes will respond to natural floods within one month of flooding, while positive responses to environmental water occur 1 to 3 months after inundation and are more restricted spatially. For environmental water planning, managers need to be aware of these differences. The implementation of new infrastructure to transport or retain environmental water on floodplains needs to be planned carefully, with continuous monitoring of rainfall and natural floods. Whilst environmental floods do not mimic the effect of natural floods, they do provide some positive benefits that can partially offset effects of reduced natural floods.
  • Item
    Thumbnail Image
    Not Just Another Assessment Method: Reimagining Environmental Flows Assessments in the Face of Uncertainty
    Horne, AC ; Webb, JA ; Mussehl, M ; John, A ; Rumpff, L ; Fowler, K ; Lovell, D ; Poff, L (FRONTIERS MEDIA SA, 2022-05-10)
    The numerous environmental flows assessment methods that exist typically assume a stationary climate. Adaptive management is commonly put forward as the preferred approach for managing uncertainty and change in environmental flows. However, we contend that a simple adaptive management loop falls short of meeting the challenges posed by climate change. Rather, a fundamental rethink is required to ensure both the structure of environmental flows assessments, along with each individual technical element, actively acknowledges the multiple dimensions of change, variability and complexity in socio-ecological systems. This paper outlines how environmental flow assessments can explicitly address the uncertainty and change inherent in adaptively managing multiple values for management of environmental flows. While non-stationarity and uncertainty are well recognised in the climate literature, these have not been addressed within the structure of environmental flows methodologies. Here, we present an environmental flow assessment that is structured to explicitly consider future change and uncertainty in climate and socio-ecological values, by examining scenarios using ecological models. The environmental flow assessment methodology further supports adaptive management through the intentional integration of participatory approaches and the inclusion of diverse stakeholders. We present a case study to demonstrate the feasibility of this approach, highlighting how this methodology facilitates adaptive management. Rethinking our approach to environmental flows assessments is an important step in ensuring that environmental flows continue to work effectively as a management tool under climate change.
  • Item
    Thumbnail Image
    A multi-model approach to assessing the impacts of catchment characteristics on spatial water quality in the Great Barrier Reef catchments
    Liu, S ; Ryu, D ; Webb, JA ; Lintern, A ; Guo, D ; Waters, D ; Western, AW (ELSEVIER SCI LTD, 2021-11-01)
    Water quality monitoring programs often collect large amounts of data with limited attention given to the assessment of the dominant drivers of spatial and temporal water quality variations at the catchment scale. This study uses a multi-model approach: a) to identify the influential catchment characteristics affecting spatial variability in water quality; and b) to predict spatial variability in water quality more reliably and robustly. Tropical catchments in the Great Barrier Reef (GBR) area, Australia, were used as a case study. We developed statistical models using 58 catchment characteristics to predict the spatial variability in water quality in 32 GBR catchments. An exhaustive search method coupled with multi-model inference approaches were used to identify important catchment characteristics and predict the spatial variation in water quality across catchments. Bootstrapping and cross-validation approaches were used to assess the uncertainty in identified important factors and robustness of multi-model structure, respectively. The results indicate that water quality variables were generally most influenced by the natural characteristics of catchments (e.g., soil type and annual rainfall), while anthropogenic characteristics (i.e., land use) also showed significant influence on dissolved nutrient species (e.g., NOX, NH4 and FRP). The multi-model structures developed in this work were able to predict average event-mean concentration well, with Nash-Sutcliffe coefficient ranging from 0.68 to 0.96. This work provides data-driven evidence for catchment managers, which can help them develop effective water quality management strategies.
  • Item
    No Preview Available
    Principles for scientists working at the river science-policy interface
    Thompson, RM ; Barbour, EJ ; Bradshaw, CJA ; Briggs, S ; Byron, N ; Grace, M ; Hart, BT ; King, AJ ; Likens, GE ; Pollino, CA ; Sheldon, F ; Stewardson, MJ ; Thoms, M ; Watts, RJ ; Webb, JA (WILEY, 2022-06)
    Abstract In the face of mounting environmental and political challenges in river management, accurate and timely scientific information is required to inform policy development and guide effective management of waterways. The Murray–Darling Basin is Australia's largest river system by area and is the subject of a heavily contested series of water reforms relying comprehensively on river science. River scientists have specialised knowledge that is an important input into evidence‐based decision‐making for the management of the Murray–Darling Basin, but despite extensive literature on the interface between science and policy, there is little guidance on achieving policy relevance for practicing scientists. Here, we provide a set of important discussion points for water scientists to consider when engaging with policy‐makers and environmental water managers. We place our considerations in the context of a broader literature discussing the role of natural‐resource scientists engaging with policy and management. We then discuss the different roles for river scientists when engaging in this space, and the advantages and pitfalls of each. We illustrate the breadth of modes of engagement at the science‐policy‐management interface using the Murray–Darling Basin as an example. We emphasise the need for effective governance arrangements and data practices to protect scientists from accusations of operating as advocates when working to inform management and policy.
  • Item
    Thumbnail Image
    Robust Climate Change Adaptation for Environmental Flows in the Goulburn River, Australia
    John, A ; Horne, A ; Nathan, R ; Fowler, K ; Webb, JA ; Stewardson, M (FRONTIERS MEDIA SA, 2021-12-06)
    Climate change presents severe risks for the implementation and success of environmental flows worldwide. Current environmental flow assessments tend to assume climate stationarity, so there is an urgent need for robust environmental flow programs that allow adaptation to changing flow regimes due to climate change. Designing and implementing robust environmental flow programs means ensuring environmental objectives are achieved under a range of uncertain, but plausible climate futures. We apply stress testing concepts previously adopted in water supply management to environmental flows at a catchment scale. We do this by exploring vulnerabilities in different river management metrics for current environmental flow arrangements in the Goulburn River, Australia, under non-stationary climatic conditions. Given the limitations of current environmental flows in supporting ecological outcomes under climate change, we tested three different adaptation options individually and in combination. Stress testing adaptation results showed that increasing environmental entitlements yielded the largest benefits in drier climate futures, whereas relaxing river capacity constraints (allowing more targeted delivery of environmental water) offered more benefits for current and wetter climates. Combining both these options led to greater than additive improvements in allocation reliability and reductions in environmental water shortfalls, and these improvements were achieved across a wider range of climatic conditions than possible with either of the individual options. However, adaptation may present additional risks to some ecological outcomes for wetter climates. Ultimately, there was a degree of plausible climate change beyond which none of the adaptation options considered were effective at improving ecological outcomes. This study demonstrates an important step for environmental flow assessments: evaluating the feasibility of environmental outcomes under climate change, and the intervention options that prove most robust under an uncertain future.
  • Item
    Thumbnail Image
    Purposeful Stakeholder Engagement for Improved Environmental Flow Outcomes
    Mussehl, ML ; Horne, AC ; Webb, JA ; Poff, NL (FRONTIERS MEDIA SA, 2022-01-25)
    Rivers are dynamic social-ecological systems that support societies and ecosystems in a multitude of ways, giving rise to a variety of user groups and competing interests. Environmental flows (e-flows) programs developed to protect riverine environments are often conceived by water managers and researchers. This is despite continued calls for increased public participation to include local communities and Indigenous peoples in the development process. Failure to do so undermines social legitimacy and program effectiveness. In this paper, we describe how adaptive management of e-flows allows an opportunity to incorporate a diversity of stakeholder views through an iterative process. However, to achieve this, stakeholder engagement must be intentionally integrated into the adaptive management cycle. Stakeholder engagement in e-flows allows for the creation of a shared understanding of a river and opens collaborative and innovative management strategies that address multiple axes of uncertainty. Here, we describe a holistic framework that unifies current participatory engagement attempts and existing technical methods into a complete strategy. The framework identifies the primary steps in an e-flows adaptive management cycle, describes potential roles of various stakeholders, and proposes potential engagement tools. Restructuring e-flows methods to adequately include stakeholders requires a shift from being driven by deliverables, such as reports and flow recommendations, to focusing on people-oriented outcomes, such as continuous learning and fostering relationships. While our work has been placed in the context of e-flows, the intentional integration of stakeholder engagement in adaptive management is pertinent to natural resources management generally.
  • Item
    Thumbnail Image
    The politicisation of science in the Murray-Darling Basin, Australia: discussion of 'Scientific integrity, public policy and water governance'
    Stewardson, MJ ; Bond, N ; Brookes, J ; Capon, S ; Dyer, F ; Grace, M ; Frazier, P ; Hart, B ; Horne, A ; King, A ; Langton, M ; Nathan, R ; Rutherfurd, I ; Sheldon, F ; Thompson, R ; Vertessy, R ; Walker, G ; Wang, QJ ; Wassens, S ; Watts, R ; Webb, A ; Western, AW (Taylor & Francis, 2021-10-30)
    Many water scientists aim for their work to inform water policy and management, and in pursuit of this objective, they often work alongside government water agencies to ensure their research is relevant, timely and communicated effectively. A paper in this issue, examining 'Science integrity, public policy and water governance in the Murray-Darling Basin, Australia’, suggests that a large group of scientists, who work on water management in the Murray-Darling Basin (MDB) including the Basin Plan, have been subject to possible ‘administrative capture'. Specifically, it is suggested that they have advocated for policies favoured by government agencies with the objective of gaining personal benefit, such as increased research funding. We examine evidence for this claim and conclude that it is not justified. The efforts of scientists working alongside government water agencies appear to have been misinterpreted as possible administrative capture. Although unsubstantiated, this claim does indicate that the science used in basin water planning is increasingly caught up in the politics of water management. We suggest actions to improve science-policy engagement in basin planning, to promote constructive debate over contested views and avoid the over-politicisation of basin science.
  • Item
    Thumbnail Image
    Key factors influencing differences in stream water quality across space
    Lintern, A ; Webb, JA ; Ryu, D ; Liu, S ; Bende-Michl, U ; Waters, D ; Leahy, P ; Wilson, P ; Western, AW (WILEY, 2018-01-01)
    Globally, many rivers are experiencing declining water quality, for example, with altered levels of sediments, salts, and nutrients. Effective water quality management requires a sound understanding of how and why water quality differs across space, both within and between river catchments. Land cover, land use, land management, atmospheric deposition, geology and soil type, climate, topography, and catchment hydrology are the key features of a catchment that affect: (1) the amount of suspended sediment, nutrient, and salt concentrations in catchments (i.e., the source), (2) the mobilization ,and (3) the delivery of these constituents to receiving waters. There are, however, complexities in the relationship between landscape characteristics and stream water quality. The strength of this relationship can be influenced by the distance and spatial arrangement of constituent sources within the catchment, cross correlations between landscape characteristics, and seasonality. A knowledge gap that should be addressed in future studies is that of interactions and cross correlations between landscape characteristics. There is currently limited understanding of how the relationships between landscape characteristics and water quality responses can shift based on the other characteristics of the catchment. Understanding the many forces driving stream water quality and the complexities and interactions in these forces is necessary for the development of successful water quality management strategies. This knowledge could be used to develop predictive models, which would aid in forecasting of riverine water quality. WIREs Water 2018, 5:e1260. doi: 10.1002/wat2.1260 This article is categorized under: Science of Water > Hydrological Processes Science of Water > Water Quality
  • Item
  • Item
    Thumbnail Image
    Using the Weibull distribution to improve the description of riverine wood loads
    Stout, JC ; Rutherfurd, I ; Grove, J ; Webb, JA ; Kitchingman, A ; Tonkin, Z (WILEY, 2017-03-30)