Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    No Preview Available
    A predictive model for spatio-temporal variability in stream water quality
    Guo, D ; Lintern, A ; Webb, JA ; Ryu, D ; Bende-Michl, U ; Liu, S ; Western, AW ( 2019-07-23)
    Abstract. Degraded water quality in rivers and streams can have large economic, societal and ecological impacts. Stream water quality can be highly variable both over space and time. To develop effective management strategies for riverine water quality, it is critical to be able to predict these spatio-temporal variabilities. However, our current capacity to model stream water quality is limited, particularly at large spatial scales across multiple catchments. This is due to a lack of understanding of the key controls that drive spatio-temporal variabilities of stream water quality. To address this, we developed a Bayesian hierarchical statistical model to analyse the spatio-temporal variability in stream water quality across the state of Victoria, Australia. The model was developed based on monthly water quality monitoring data collected at 102 sites over 21 years. The modelling focused on six key water quality constituents: total suspended solids (TSS), total phosphorus (TP), filterable reactive phosphorus (FRP), total Kjeldahl nitrogen (TKN), nitrate-nitrite (NOx), and electrical conductivity (EC). Among the six constituents, the models explained varying proportions of variation in water quality. EC was the most predictable constituent (88.6 % variability explained) and FRP had the lowest predictive performance (19.9 % variability explained). The models were validated for multiple sets of calibration/validation sites and showed robust performance. Temporal validation revealed a systematic change in the TSS model performance across most catchments since an extended drought period in the study region, highlighting potential shifts in TSS dynamics over the drought. Further improvements in model performance need to focus on: (1) alternative statistical model structures to improve fitting for the low concentration data, especially records below the detection limit; and (2) better representation of non-conservative constituents by accounting for important biogeochemical processes. We also recommend future improvements in water quality monitoring programs which can potentially enhance the model capacity, via: (1) improving the monitoring and assimilation of high-frequency water quality data; and (2) improving the availability of data to capture land use and management changes over time.
  • Item
    Thumbnail Image
    A Bayesian approach to understanding the key factors influencing temporal variability in stream water quality: a case study in the Great Barrier Reef catchments
    Liu, S ; Ryu, D ; Webb, JA ; Lintern, A ; Guo, D ; Waters, D ; Western, AW ( 2021-01-12)
    Abstract. Stream water quality is highly variable both across space and time. Water quality monitoring programs have collected a large amount of data that provide a good basis to investigate the key drivers of spatial and temporal variability. Event-based water quality monitoring data in the Great Barrier Reef catchments in northern Australia provides an opportunity to further our understanding of water quality dynamics in sub-tropical and tropical regions. This study investigated nine water quality constituents, including sediments, nutrients and salinity, with the aim of: 1) identifying the influential environmental drivers of temporal variation in flow event concentrations; and 2) developing a modelling framework to predict the temporal variation in water quality at multiple sites simultaneously. This study used a hierarchical Bayesian model averaging framework to explore the relationship between event concentration and catchment-scale environmental variables (e.g., runoff, rainfall and groundcover conditions). Key factors affecting the temporal changes in water quality varied among constituent concentrations, as well as between catchments. Catchment rainfall and runoff affected in-stream particulate constituents, while catchment wetness and vegetation cover had more impact on dissolved nutrient concentration and salinity. In addition, in large dry catchments, antecedent catchment soil moisture and vegetation had a large influence on dissolved nutrients, which highlights the important effect of catchment hydrological connectivity on pollutant mobilisation and delivery.
  • Item
    Thumbnail Image
    A multi-model approach to assessing the impacts of catchment characteristics on spatial water quality in the Great Barrier Reef catchments
    Liu, S ; Ryu, D ; Webb, JA ; Lintern, A ; Guo, D ; Waters, D ; Western, AW (ELSEVIER SCI LTD, 2021-11-01)
    Water quality monitoring programs often collect large amounts of data with limited attention given to the assessment of the dominant drivers of spatial and temporal water quality variations at the catchment scale. This study uses a multi-model approach: a) to identify the influential catchment characteristics affecting spatial variability in water quality; and b) to predict spatial variability in water quality more reliably and robustly. Tropical catchments in the Great Barrier Reef (GBR) area, Australia, were used as a case study. We developed statistical models using 58 catchment characteristics to predict the spatial variability in water quality in 32 GBR catchments. An exhaustive search method coupled with multi-model inference approaches were used to identify important catchment characteristics and predict the spatial variation in water quality across catchments. Bootstrapping and cross-validation approaches were used to assess the uncertainty in identified important factors and robustness of multi-model structure, respectively. The results indicate that water quality variables were generally most influenced by the natural characteristics of catchments (e.g., soil type and annual rainfall), while anthropogenic characteristics (i.e., land use) also showed significant influence on dissolved nutrient species (e.g., NOX, NH4 and FRP). The multi-model structures developed in this work were able to predict average event-mean concentration well, with Nash-Sutcliffe coefficient ranging from 0.68 to 0.96. This work provides data-driven evidence for catchment managers, which can help them develop effective water quality management strategies.
  • Item
    Thumbnail Image
    A Bayesian approach to understanding the key factors influencing temporal variability in stream water quality - a case study in the Great Barrier Reef catchments
    Liu, S ; Ryu, D ; Webb, JA ; Lintern, A ; Guo, D ; Waters, D ; Western, AW (COPERNICUS GESELLSCHAFT MBH, 2021-05-20)
    Abstract. Stream water quality is highly variable both across space and time. Water quality monitoring programmes have collected a large amount of data that provide a good basis for investigating the key drivers of spatial and temporal variability. Event-based water quality monitoring data in the Great Barrier Reef catchments in northern Australia provide an opportunity to further our understanding of water quality dynamics in subtropical and tropical regions. This study investigated nine water quality constituents, including sediments, nutrients and salinity, with the aim of (1) identifying the influential environmental drivers of temporal variation in flow event concentrations and (2) developing a modelling framework to predict the temporal variation in water quality at multiple sites simultaneously. This study used a hierarchical Bayesian model averaging framework to explore the relationship between event concentration and catchment-scale environmental variables (e.g. runoff, rainfall and groundcover conditions). Key factors affecting the temporal changes in water quality varied among constituent concentrations and between catchments. Catchment rainfall and runoff affected in-stream particulate constituents, while catchment wetness and vegetation cover had more impact on dissolved nutrient concentration and salinity. In addition, in large dry catchments, antecedent catchment soil moisture and vegetation had a large influence on dissolved nutrients, which highlights the important effect of catchment hydrological connectivity on pollutant mobilisation and delivery.
  • Item
    Thumbnail Image
    A data-based predictive model for spatiotemporal variability in stream water quality
    Guo, D ; Lintern, A ; Webb, JA ; Ryu, D ; Bende-Michl, U ; Liu, S ; Western, AW (COPERNICUS GESELLSCHAFT MBH, 2020-02-24)
    Abstract. Our current capacity to model stream water quality is limited – particularly at large spatial scales across multiple catchments. To address this, we developed a Bayesian hierarchical statistical model to simulate the spatiotemporal variability in stream water quality across the state of Victoria, Australia. The model was developed using monthly water quality monitoring data over 21 years and across 102 catchments (which span over 130 000 km2). The modeling focused on six key water quality constituents: total suspended solids (TSS), total phosphorus (TP), filterable reactive phosphorus (FRP), total Kjeldahl nitrogen (TKN), nitrate–nitrite (NOx) and electrical conductivity (EC). The model structure was informed by knowledge of the key factors driving water quality variation, which were identified in two preceding studies using the same dataset. Apart from FRP, which is hardly explained (19.9 %), the model explains 38.2 % (NOx) to 88.6 % (EC) of the total spatiotemporal variability in water quality. Across constituents, the model generally captures over half of the observed spatial variability; the temporal variability remains largely unexplained across all catchments, although long-term trends are well captured. The model is best used to predict proportional changes in water quality on a Box–Cox-transformed scale, but it can have substantial bias if used to predict absolute values for high concentrations. This model can assist catchment management by (1) identifying hot spots and hot moments for waterway pollution; (2) predicting the effects of catchment changes on water quality, e.g., urbanization or forestation; and (3) identifying and explaining major water quality trends and changes. Further model improvements should focus on the following: (1) alternative statistical model structures to improve fitting for truncated data (for constituents where a large amount of data fall below the detection limit); and (2) better representation of nonconservative constituents (e.g., FRP) by accounting for important biogeochemical processes.
  • Item
    Thumbnail Image
    A web-based interface to visualize and model spatio-temporal variability of stream water quality
    Guo, D ; Lintern, A ; Webb, J ; Ryu, D ; Liu, S ; Bende-Michl, U ; Leahy, P ; Waters, D ; Watson, M ; Wilson, P ; Western, A ; Vietz, G ; Rutherfurd, I (River Basement Management Society, 2018)
    Understanding the spatio-temporal variability in stream water quality is critical for designing effective water quality management strategies. To facilitate this, we developed a web-based interface to visualize and model the spatio-temporal variability of stream water quality in Victoria. We used a dataset of long-term monthly water quality measurements from 102 monitoring sites in Victoria, focusing on six water quality constituents: total suspended solids (TSS), total phosphorus (TP), filterable reactive phosphorus (FRP), total Kjedahl nitrogen (TKN), nitrate-nitrite (NOx), and electrical conductivity (EC). The interface models spatio-temporal variability in water quality via a Bayesian hierarchical modelling framework, and produces summaries of (1) the key driving factors of spatio-temporal variability and (2) model performance assessed by multiple metrics. Additional features include predicting the time-averaged mean concentration at an un-sampled site, and testing the impact of land-use changes on the mean concentration at existing sites. This tool can be very useful in supporting the decision-making processes of catchment managers in (1) understanding the key drivers of changes in water quality and (2) designing water quality mitigation and restoration strategies.
  • Item
    Thumbnail Image
    Characterisation of spatial variability in water quality in the Great Barrier Reef catchments using multivariate statistical analysis
    Liu, S ; Ryu, D ; Webb, JA ; Lintern, A ; Waters, D ; Guo, D ; Western, AW (PERGAMON-ELSEVIER SCIENCE LTD, 2018-12)
    Water quality monitoring is important to assess changes in inland and coastal water quality. The focus of this study was to improve understanding of the spatial component of spatial-temporal water quality dynamics, particularly the spatial variability in water quality and the association between this spatial variability and catchment characteristics. A dataset of nine water quality constituents collected from 32 monitoring sites over a 11-year period (2006-2016), across the Great Barrier Reef catchments (Queensland, Australia), were evaluated by multivariate techniques. Two clusters were identified, which were strongly associated with catchment characteristics. A two-step Principal Component Analysis/Factor Analysis revealed four groupings of constituents with similar spatial pattern and allowed the key catchment characteristics affecting water quality to be determined. These findings provide a more nuanced view of spatial variations in water quality compared with previous understanding and an improved basis for water quality management to protect nearshore marine ecosystem.
  • Item
    Thumbnail Image
    Integrated modelling of spatio-temporal variability in stream water quality across victorian catchments
    Guo, D ; Lintern, A ; Webb, JA ; Ryu, D ; Liu, S ; Western, AW (Engineers Australia, 2018-01-01)
    Degraded water quality in rivers and streams can have large economical, societal and ecological impacts. Stream water quality can be highly variable both over space and time, so understanding and modelling these spatio-temporal variabilities is critical to developing management and mitigation strategies to improve riverine water quality. However, there is currently limited capacity to model stream water quality due to the lack of understanding of the key factors driving spatio-temporal variability in water quality. To address this, a Bayesian hierarchical statistical model has been developed to describe the spatio-temporal variability in stream water quality across multiple catchments in the state of Victoria, Australia. We used monthly water quality monitoring data collected at 102 sites over 20 years. The modelling focused on three key water quality indicators: total suspended solids (TSS), nitrate-nitrite (NOx) and salinity (EC). It was found that both human-influenced catchment characteristics (land use) and other natural characteristics such as climate or topography are important drivers of spatial variabilities. The key drivers of temporal variability are changes in streamflow, climate and vegetation cover. These key drivers have been integrated into a spatio-temporal modelling framwork. These models can be applied at different spatial and temporal scales, and explain a reasonable proportion of spatio-temporal variation in the different water quality constituents. The extension and adaption of these models is currently underway to create an operational tool to forecast stream water quality responses to potential land use and climatic changes.
  • Item
    Thumbnail Image
    Key Factors Affecting Temporal Variability in Stream Water Quality
    Guo, D ; Lintern, A ; Webb, JA ; Ryu, D ; Liu, S ; Bende-Michl, U ; Leahy, P ; Wilson, P ; Western, AW (AMER GEOPHYSICAL UNION, 2019-01)
    Abstract Understanding the factors that influence temporal variability in water quality is critical for designing water quality management strategies. In this study, we explore the key factors that affect temporal variability in stream water quality across multiple catchments using a Bayesian hierarchical model. We apply this model to a case study data set consisting of monthly water quality measurements obtained over a 20‐year period from 102 water quality monitoring sites in the state of Victoria (Southeast Australia). We investigate six water quality constituents: total suspended solids, total phosphorus, filterable reactive phosphorus, total Kjeldahl nitrogen, nitrate‐nitrite (NOx), and electrical conductivity. We find that same‐day streamflow has the greatest effect on water quality variability for all constituents. Additional important predictors include soil moisture, antecedent streamflow, vegetation cover, and water temperature. Overall, the models do not explain a large proportion of temporal variation in water quality, with Nash‐Sutcliffe coefficients lower than 0.49. However, when considering performance on a site‐by‐site basis, we see high model performance in some locations, with Nash‐Sutcliffe coefficients of up to 0.8 for NOx and electrical conductivity. The effect of the temporal predictors on water quality varies between sites, which should be explored further for potential spatial patterns in future studies. There is also potential for further extension of these temporal variability models into a predictive spatiotemporal model of riverine constituent concentrations, which will be a useful tool to inform decision making for catchment water quality management.