Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Predicting shifts in rainfall-runoff partitioning during multiyear drought: Roles of dry period and catchment characteristics
    Saft, M ; Peel, MC ; Western, AW ; Zhang, L (AMER GEOPHYSICAL UNION, 2016-12)
    Abstract While the majority of hydrological prediction methods assume that observed interannual variability explores the full range of catchment response dynamics, recent cases of prolonged climate drying suggest otherwise. During the ∼decade‐long Millennium drought in south‐eastern Australia significant shifts in hydrologic behavior were reported. Catchment rainfall‐runoff partitioning changed from what was previously encountered during shorter droughts, with significantly less runoff than expected occurring in many catchments. In this article, we investigate the variability in the magnitude of shift in rainfall‐runoff partitioning observed during the Millennium drought. We re‐evaluate a large range of factors suggested to be responsible for the additional runoff reductions. Our results suggest that the shifts were mostly influenced by catchment characteristics related to predrought climate (aridity index and rainfall seasonality) and soil and groundwater storage dynamics (predrought interannual variability of groundwater storage and mean solum thickness). The shifts were amplified by seasonal rainfall changes during the drought (spring rainfall deficits). We discuss the physical mechanisms that are likely to be associated with these factors. Our results confirm that shifts in the annual rainfall‐runoff relationship represent changes in internal catchment functioning, and emphasize the importance of cumulative multiyear changes in the catchment storage for runoff generation. Prolonged drying in some regions can be expected in the future, and our results provide an indication of which catchments characteristics are associated with catchments more susceptible to a shift in their runoff response behavior.
  • Item
    Thumbnail Image
    The influence of multiyear drought on the annual rainfall-runoff relationship: An Australian perspective
    Saft, M ; Western, AW ; Zhang, L ; Peel, MC ; Potter, NJ (AMER GEOPHYSICAL UNION, 2015-04)
    Abstract Most current long‐term (decadal and longer) hydrological predictions implicitly assume that hydrological processes are stationary even under changing climate. However, in practice, we suspect that changing climatic conditions may affect runoff generation processes and cause changes in the rainfall‐runoff relationship. In this article, we investigate whether temporary but prolonged (i.e., of the order of a decade) shifts in rainfall result in changes in rainfall‐runoff relationships at the catchment scale. Annual rainfall and runoff records from south‐eastern Australia are used to examine whether interdecadal climate variability induces changes in hydrological behavior. We test statistically whether annual rainfall‐runoff relationships are significantly different during extended dry periods, compared with the historical norm. The results demonstrate that protracted drought led to a significant shift in the rainfall‐runoff relationship in ∼46% of the catchment‐dry periods studied. The shift led to less annual runoff for a given annual rainfall, compared with the historical relationship. We explore linkages between cases where statistically significant changes occurred and potential explanatory factors, including catchment properties and characteristics of the dry period (e.g., length, precipitation anomalies). We find that long‐term drought is more likely to affect transformation of rainfall to runoff in drier, flatter, and less forested catchments. Understanding changes in the rainfall‐runoff relationship is important for accurate streamflow projections and to help develop adaptation strategies to deal with multiyear droughts.
  • Item
    Thumbnail Image
    Bias in streamflow projections due to climate-induced shifts in catchment response
    Saft, M ; Peel, MC ; Western, AW ; Perraud, J-M ; Zhang, L (AMER GEOPHYSICAL UNION, 2016-02-28)
    Abstract Demand for quantitative assessments of likely climate change impact on runoff is increasing and conceptual rainfall‐runoff models are essential tools for this task. However, the capacity of these models to extrapolate under changing climatic conditions is questionable. A number of studies have found that model predictive skill decreases with changed climatic conditions, especially when predicting drier climates. We found that model skill only declines under certain circumstances, in particular, when a catchment's rainfall‐runoff processes change due to changed climatic drivers. In catchments where the rainfall‐runoff relationship changed significantly in response to prolonged dry conditions, runoff was consistently overestimated. In contrast, modeled runoff was unbiased in catchments where the rainfall‐runoff relationship remained unchanged during the dry period. These conclusions were not model dependent. Our results suggest that current projections of runoff under climate change may provide overly optimistic assessments of future water availability in some regions expecting rainfall reductions.