Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    Thumbnail Image
    Explaining changes in rainfall-runoff relationships during and after Australia's Millennium Drought: a community perspective
    Fowler, K ; Peel, M ; Saft, M ; Peterson, TJ ; Western, A ; Band, L ; Petheram, C ; Dharmadi, S ; Tan, KS ; Zhang, L ; Lane, P ; Kiem, A ; Marshall, L ; Griebel, A ; Medlyn, BE ; Ryu, D ; Bonotto, G ; Wasko, C ; Ukkola, A ; Stephens, C ; Frost, A ; Weligamage, HG ; Saco, P ; Zheng, H ; Chiew, F ; Daly, E ; Walker, G ; Vervoort, RW ; Hughes, J ; Trotter, L ; Neal, B ; Cartwright, I ; Nathan, R (COPERNICUS GESELLSCHAFT MBH, 2022-12-06)
    Abstract. The Millennium Drought lasted more than a decade and is notable for causing persistent shifts in the relationship between rainfall and runoff in many southeastern Australian catchments. Research to date has successfully characterised where and when shifts occurred and explored relationships with potential drivers, but a convincing physical explanation for observed changes in catchment behaviour is still lacking. Originating from a large multi-disciplinary workshop, this paper presents and evaluates a range of hypothesised process explanations of flow response to the Millennium Drought. The hypotheses consider climatic forcing, vegetation, soil moisture dynamics, groundwater, and anthropogenic influence. The hypotheses are assessed against evidence both temporally (e.g. why was the Millennium Drought different to previous droughts?) and spatially (e.g. why did rainfall–runoff relationships shift in some catchments but not in others?). Thus, the strength of this work is a large-scale assessment of hydrologic changes and potential drivers. Of 24 hypotheses, 3 are considered plausible, 10 are considered inconsistent with evidence, and 11 are in a category in between, whereby they are plausible yet with reservations (e.g. applicable in some catchments but not others). The results point to the unprecedented length of the drought as the primary climatic driver, paired with interrelated groundwater processes, including declines in groundwater storage, altered recharge associated with vadose zone expansion, and reduced connection between subsurface and surface water processes. Other causes include increased evaporative demand and harvesting of runoff by small private dams. Finally, we discuss the need for long-term field monitoring, particularly targeting internal catchment processes and subsurface dynamics. We recommend continued investment in the understanding of hydrological shifts, particularly given their relevance to water planning under climate variability and change.
  • Item
    Thumbnail Image
    Identifying Causal Interactions Between Groundwater and Streamflow Using Convergent Cross-Mapping
    Bonotto, G ; Peterson, TJ ; Fowler, K ; Western, AW (AMER GEOPHYSICAL UNION, 2022-08)
    Abstract Groundwater (GW) is commonly conceptualized as causally linked to streamflow (SF). However, confirming where and how it occurs is challenging given the expense of experimental field monitoring. Therefore, hydrological modeling and water management often rely on expert knowledge to draw causality between SF and GW. This paper investigates the potential of convergent cross‐mapping (CCM) to identify causal interactions between SF and GW head. Widely used in ecology, CCM is a nonparametric method to identify causality in nonlinear dynamic systems. To apply CCM between variables the only required inputs are time‐series data (stream gauge and bore), so it may be an attractive alternative or complement to expensive field‐based studies of causality. Three upland catchments across different hydrogeologic settings and climatic conditions in Victoria, Australia, are adopted as case studies. The outputs of the method seem to largely agree with a priori perceptual understanding of the study areas and offered additional insights about hydrological processes. For instance, it suggested weaker SF‐GW interactions during and after the Millennium Drought than in the previous wet periods. However, we show that CCM limitations around seasonality, data sampling frequency, and long‐term trends could impact the variability and significance of causal links. Hence, care must be taken while physically interpreting the causal links suggested by CCM. Overall, this study shows that CCM can provide valuable causal information from common hydrological time‐series, which is relevant to a wide range of applications, but it should be used and interpreted with care and future research is needed.
  • Item
    Thumbnail Image
    A synthetic study to evaluate the utility of hydrological signatures for calibrating a base flow separation filter
    Su, C-H ; Peterson, TJ ; Costelloe, JF ; Western, AW (AMER GEOPHYSICAL UNION, 2016-08)
    Abstract Estimation of base flow from streamflow hydrographs has been a major challenge in hydrology for decades, leading to developments of base flow separation filters. When without tracer or groundwater data to calibrate the filters, the standard approach to apply these filters in practice involves some degrees of subjectivity in choosing the filter parameters. This paper investigates the use of signature‐based calibration in implementing base flow filtering by testing seven possible hydrological signatures of base flow against modeled daily base flow produced by Li et al. (2014) for a range of synthetic catchments simulated with HydroGeoSphere. Our evaluation demonstrates that such a calibration method with few selected signatures as objectives is capable of calibrating a filter–Eckhardt filter–to yield satisfactory base flow estimates at daily, monthly and long‐term time scales, outperforming the standard approach. The best performing signatures can be readily derived from streamflow time series. While their performance depends on the catchment characteristics, the catchments where the signature method performs can be distinguished using commonly‐used descriptors of flow dynamics.
  • Item
    Thumbnail Image
    Can we manage groundwater? A method to determine the quantitative testability of groundwater management plans
    White, EK ; Peterson, TJ ; Costelloe, J ; Western, AW ; Carrara, E (AMER GEOPHYSICAL UNION, 2016-06)
    Abstract Groundwater is the world's largest freshwater resource and due to overextraction, levels have declined in many regions causing extensive social and environmental impacts. Groundwater management seeks to balance and mitigate the detrimental impacts of development, with plans commonly used to outline management pathways. Thus, plan efficiency is crucial, but seldom are plans systematically and quantitatively assessed for effectiveness. This study frames groundwater management as a system control problem in order to develop a novel testability assessment rubric to determine if plans meet the requirements of a control loop, and subsequently, whether they can be quantitatively tested. Seven components of a management plan equivalent to basic components of a control loop were determined, and requirements of each component necessary to enable testability were defined. Each component was weighted based upon proposed relative importance, then segmented into rated categories depending on the degree the requirements were met. Component importance varied but, a defined objective or acceptable impact was necessary for plans to be testable. The rubric was developed within the context of the Australian groundwater management industry, and while use of the rubric is not limited to Australia, it was applied to 15 Australian groundwater management plans and approximately 47% were found to be testable. Considering the importance of effective groundwater management, and the central role of plans, our lack of ability to test many plans is concerning.
  • Item
    Thumbnail Image
    On the structural limitations of recursive digital filters for base flow estimation
    Su, C-H ; Costelloe, JF ; Peterson, TJ ; Western, AW (AMER GEOPHYSICAL UNION, 2016-06)
    Abstract Recursive digital filters (RDFs) are widely used for estimating base flow from streamflow hydrographs, and various forms of RDFs have been developed based on different physical models. Numerical experiments have been used to objectively evaluate their performance, but they have not been sufficiently comprehensive to assess a wide range of RDFs. This paper extends these studies to understand the limitations of a generalized RDF method as a pathway for future field calibration. Two formalisms are presented to generalize most existing RDFs, allowing systematic tuning of their complexity. The RDFs with variable complexity are evaluated collectively in a synthetic setting, using modeled daily base flow produced by Li et al. (2014) from a range of synthetic catchments simulated with HydroGeoSphere. Our evaluation reveals that there are optimal RDF complexities in reproducing base flow simulations but shows that there is an inherent physical inconsistency within the RDF construction. Even under the idealized setting where true base flow data are available to calibrate the RDFs, there is persistent disagreement between true and estimated base flow over catchments with small base flow components, low saturated hydraulic conductivity of the soil and larger surface runoff. The simplest explanation is that low base flow “signal” in the streamflow data is hard to distinguish, although more complex RDFs can improve upon the simpler Eckhardt filter at these catchments.
  • Item
    Thumbnail Image
    Equifinality and Flux Mapping: A New Approach to Model Evaluation and Process Representation Under Uncertainty
    Khatami, S ; Peel, MC ; Peterson, TJ ; Western, AW (AMER GEOPHYSICAL UNION, 2019-11)
    Abstract Uncertainty analysis is an integral part of any scientific modeling, particularly within the domain of hydrological sciences given the various types and sources of uncertainty. At the center of uncertainty rests the concept of equifinality, that is, reaching a given endpoint (finality) through different pathways. The operational definition of equifinality in hydrological modeling is that various model structures and/or parameter sets (i.e., equal pathways) are equally capable of reproducing a similar (not necessarily identical) hydrological outcome (i.e., finality). Here we argue that there is more to model equifinality than model structures/parameters, that is, other model components can give rise to model equifinality and/or could be used to explore equifinality within model space. We identified six facets of model equifinality, namely, model structure, parameters, performance metrics, initial and boundary conditions, inputs, and internal fluxes. Focusing on model internal fluxes, we developed a methodology called flux mapping that has fundamental implications in understanding and evaluating model process representation within the paradigm of multiple working hypotheses. To illustrate this, we examine the equifinality of runoff fluxes of a conceptual rainfall‐runoff model for a number of different Australian catchments. We demonstrate how flux maps can give new insights into the model behavior that cannot be captured by conventional model evaluation methods. We discuss the advantages of flux space, as a subspace of the model space not usually examined, over parameter space. We further discuss the utility of flux mapping in hypothesis generation and testing, extendable to any field of scientific modeling of open complex systems under uncertainty.
  • Item
    Thumbnail Image
    Statistical Interpolation of Groundwater Hydrographs
    Peterson, TJ ; Western, AW (AMER GEOPHYSICAL UNION, 2018-07)
    Abstract Groundwater observation bores are often monitored irregularly and infrequently. The resulting groundwater hydrographs are consequently less informative for understanding groundwater level trends, seasonality, flow directions, drawdown, and recovery. This paper presents an approach to temporally interpolate a groundwater hydrograph that has an irregular observation frequency to daily time steps. The approach combines nonlinear transfer function noise modeling with temporal kriging of the model residuals to produce an interpolated hydrograph that honors all water level observations input to the modeling and accounts for meteorological forcing between the observations. The reliability of the approach was evaluated using six observation bores having extended periods of daily data and by resampling them to six observation frequencies ranging from weekly to annually. The analysis showed that for weekly to monthly resampled data, >90% of the observed daily variability can be simulated at four of six bores. The performance declined with observation step size, as expected, but even at a biannual time step the error corrected interpolation can explain >70% of the variance at three of six bores. Additionally, an application shows that (1) the probability of a water level depth being exceeded can be estimated from quarterly resampled data and (2) the median annual water level range can be estimated from monthly resampled data. Supplementing less frequent observations with 6 and 12 months of daily data was also examined, with the addition of a 12‐month period significantly improving interpolation results at three of the four analyzed bores. The approach has been incorporated into the HydroSight toolbox http://peterson‐tim‐j.github.io/HydroSight/.
  • Item
  • Item
  • Item
    Thumbnail Image
    Many Commonly Used Rainfall‐Runoff Models Lack Long, Slow Dynamics: Implications for Runoff Projections
    Fowler, K ; Knoben, W ; Peel, M ; Peterson, T ; Ryu, D ; Saft, M ; Seo, K ; Western, A (American Geophysical Union (AGU), 2020-05)
    Evidence suggests that catchment state variables such as groundwater can exhibit multiyear trends. This means that their state may reflect not only recent climatic conditions but also climatic conditions in past years or even decades. Here we demonstrate that five commonly used conceptual “bucket” rainfall‐runoff models are unable to replicate multiyear trends exhibited by natural systems during the “Millennium Drought” in south‐east Australia. This causes an inability to extrapolate to different climatic conditions, leading to poor performance in split sample tests. Simulations are examined from five models applied in 38 catchments, then compared with groundwater data from 19 bores and Gravity Recovery and Climate Experiment data for two geographic regions. Whereas the groundwater and Gravity Recovery and Climate Experiment data decrease from high to low values gradually over the duration of the 13‐year drought, the model storages go from high to low values in a typical seasonal cycle. This is particularly the case in the drier, flatter catchments. Once the drought begins, there is little room for decline in the simulated storage, because the model “buckets” are already “emptying” on a seasonal basis. Since the effects of sustained dry conditions cannot accumulate within these models, we argue that they should not be used for runoff projections in a drying climate. Further research is required to (a) improve conceptual rainfall‐runoff models, (b) better understand circumstances in which multiyear trends in state variables occur, and (c) investigate links between these multiyear trends and changes in rainfall‐runoff relationships in the context of a changing climate.