Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    Thumbnail Image
    A Bayesian approach to understanding the key factors influencing temporal variability in stream water quality: a case study in the Great Barrier Reef catchments
    Liu, S ; Ryu, D ; Webb, JA ; Lintern, A ; Guo, D ; Waters, D ; Western, AW ( 2021-01-12)
    Abstract. Stream water quality is highly variable both across space and time. Water quality monitoring programs have collected a large amount of data that provide a good basis to investigate the key drivers of spatial and temporal variability. Event-based water quality monitoring data in the Great Barrier Reef catchments in northern Australia provides an opportunity to further our understanding of water quality dynamics in sub-tropical and tropical regions. This study investigated nine water quality constituents, including sediments, nutrients and salinity, with the aim of: 1) identifying the influential environmental drivers of temporal variation in flow event concentrations; and 2) developing a modelling framework to predict the temporal variation in water quality at multiple sites simultaneously. This study used a hierarchical Bayesian model averaging framework to explore the relationship between event concentration and catchment-scale environmental variables (e.g., runoff, rainfall and groundcover conditions). Key factors affecting the temporal changes in water quality varied among constituent concentrations, as well as between catchments. Catchment rainfall and runoff affected in-stream particulate constituents, while catchment wetness and vegetation cover had more impact on dissolved nutrient concentration and salinity. In addition, in large dry catchments, antecedent catchment soil moisture and vegetation had a large influence on dissolved nutrients, which highlights the important effect of catchment hydrological connectivity on pollutant mobilisation and delivery.
  • Item
    Thumbnail Image
    A multi-model approach to assessing the impacts of catchment characteristics on spatial water quality in the Great Barrier Reef catchments
    Liu, S ; Ryu, D ; Webb, JA ; Lintern, A ; Guo, D ; Waters, D ; Western, AW (ELSEVIER SCI LTD, 2021-11-01)
    Water quality monitoring programs often collect large amounts of data with limited attention given to the assessment of the dominant drivers of spatial and temporal water quality variations at the catchment scale. This study uses a multi-model approach: a) to identify the influential catchment characteristics affecting spatial variability in water quality; and b) to predict spatial variability in water quality more reliably and robustly. Tropical catchments in the Great Barrier Reef (GBR) area, Australia, were used as a case study. We developed statistical models using 58 catchment characteristics to predict the spatial variability in water quality in 32 GBR catchments. An exhaustive search method coupled with multi-model inference approaches were used to identify important catchment characteristics and predict the spatial variation in water quality across catchments. Bootstrapping and cross-validation approaches were used to assess the uncertainty in identified important factors and robustness of multi-model structure, respectively. The results indicate that water quality variables were generally most influenced by the natural characteristics of catchments (e.g., soil type and annual rainfall), while anthropogenic characteristics (i.e., land use) also showed significant influence on dissolved nutrient species (e.g., NOX, NH4 and FRP). The multi-model structures developed in this work were able to predict average event-mean concentration well, with Nash-Sutcliffe coefficient ranging from 0.68 to 0.96. This work provides data-driven evidence for catchment managers, which can help them develop effective water quality management strategies.
  • Item
    Thumbnail Image
    In-season crop classification using optical remote sensing with random forest over irrigated agricultural fields in Australia
    Gao, Z ; Guo, D ; Ryu, D ; Western, A (Copernicus Publications, 2021-03-03)
    <p>Timely classification of crop types is critical for agronomic planning in water use and crop production. However, crop type mapping is typically undertaken only after the cropping season, which precludes its uses in later-season water use planning and yield estimation. This study aims 1) to understand how the accuracy of crop type classification changes within cropping season and 2) to suggest the earliest time that it is possible to achieve reliable crop classification. We focused on three main summer crops (corn/maize, cotton and rice) in the Coleambally Irrigation Area (CIA), a major irrigation district in south-eastern Australia consisting of over 4000 fields, for the period of 2013 to 2019. The summer irrigation season in the CIA is from mid-August to mid-May and most farms use surface irrigation to support the growth of summer crops. We developed models that combine satellite data and farmer-reported information for in-season crop type classification. Monthly-averaged Landsat spectral bands were used as input to Random Forest algorithm. We developed multiple models trained with data initially available at the start of the cropping season, then later using all the antecedent images up to different stages within the season. We evaluated the model performance and uncertainty using a two-fold cross validation by randomly choosing training vs. validation periods. Results show that the classification accuracy increases rapidly during the first three months followed by a marginal improvement afterwards. Crops can be classified with a User’s accuracy above 70% based on the first 2-3 months after the start of the season. Cotton and rice have higher in-season accuracy than corn/maize. The resulting crop maps can be used to support activities such as later-season system scale irrigation decision-making or yield estimation at a regional scale.</p><p>Keywords: Landsat 8 OLI, in-season, multi-year, crop type, Random Forest</p>
  • Item
    Thumbnail Image
    Using short-term ensemble weather forecast to evaluate outcomes of irrigation
    Guo, D ; Western, A ; Wang, Q ; Ryu, D ; Moller, P ; Aughton, D (Copernicus Publications, 2021-03-03)
    <p>Irrigation water is an expensive and limited resource. Previous studies show that irrigation scheduling can boost efficiency by 20-60%, while improving water productivity by at least 10%. In practice, scheduling decisions are often needed several days prior to an irrigation event, so a key aspect of irrigation scheduling is the accurate prediction of crop water use and soil water status ahead of time. This prediction relies on several key inputs such as soil water, weather and crop conditions. Since each input can be subject to its own uncertainty, it is important to understand how these uncertainties impact soil water prediction and subsequent irrigation scheduling decisions.</p><p>This study aims to evaluate the outcomes of alternative irrigation scheduling decisions under uncertainty, with a focus on the uncertainties arising from short-term weather forecast. To achieve this, we performed a model-based study to simulate crop root-zone soil water content, in which we comprehensively explored different combinations of ensemble short-term rainfall forecast and alternative decisions of irrigation scheduling. This modelling produced an ensemble of soil water contents to enable quantification of risks of over- and under-irrigation; these ensemble estimates were summarized to inform optimal timing of next irrigation event to minimize both the risks of stressing crop and wasting water. With inclusion of other sources of uncertainty (e.g. soil water observation, crop factor), this approach shows good potential to be extended to a comprehensive framework to support practical irrigation decision-making for farmers.</p>
  • Item
    Thumbnail Image
    Improving the representation of cropland sites in the Community Land Model (CLM) version 5.0
    Boas, T ; Bogena, H ; Grünwald, T ; Heinesch, B ; Ryu, D ; Schmidt, M ; Vereecken, H ; Western, A ; Hendricks-Franssen, H-J (Copernicus Publications, 2021-03-04)
    <p>The incorporation of a comprehensive crop module in land surface models offers the possibility to study the effect of agricultural land use and land management changes on the terrestrial water, energy and biogeochemical cycles. It may help to improve the simulation of biogeophysical and biogeochemical processes on regional and global scales in the framework of climate and land use change. In this study, the performance of the crop module of the Community Land Model version 5 (CLM5) was evaluated at point scale with site specific field data focussing on the simulation of seasonal and inter-annual variations in crop growth, planting and harvesting cycles, and crop yields as well as water, energy and carbon fluxes. In order to better represent agricultural sites, the model was modified by (1) implementing the winter wheat subroutines after Lu et al. (2017) in CLM5; (2) implementing plant specific parameters for sugar beet, potatoes and winter wheat, thereby adding the two crop functional types (CFT) for sugar beet and potatoes to the list of actively managed crops in CLM5; (3) introducing a cover cropping subroutine that allows multiple crop types on the same column within one year. The latter modification allows the simulation of cropping during winter months before usual cash crop planting begins in spring, which is an agricultural management technique with a long history that is regaining popularity to reduce erosion and improve soil health and carbon storage and is commonly used in the regions evaluated in this study. We compared simulation results with field data and found that both the new crop specific parameterization, as well as the winter wheat subroutines, led to a significant simulation improvement in terms of energy fluxes (RMSE reduction for latent and sensible heat by up to 57 % and 59 %, respectively), leaf area index (LAI), net ecosystem exchange and crop yield (up to 87 % improvement in winter wheat yield prediction) compared with default model results. The cover cropping subroutine yielded a substantial improvement in representation of field conditions after harvest of the main cash crop (winter season) in terms of LAI magnitudes and seasonal cycle of LAI, and latent heat flux (reduction of winter time RMSE for latent heat flux by 42 %). Our modifications significantly improved model simulations and should therefore be applied in future studies with CLM5 to improve regional yield predictions and to better understand large-scale impacts of agricultural management on carbon, water and energy fluxes.</p>
  • Item
    Thumbnail Image
    Which multispectral indices robustly measure canopy nitrogen across seasons: Lessons from an irrigated pasture crop
    Patel, MK ; Ryu, D ; Western, AW ; Suter, H ; Young, IM (ELSEVIER SCI LTD, 2021-03)
    In precision farming, accurate estimation of canopy nitrogen concentration (CNC) is valuable for effective crop growth monitoring and nitrogen (N) fertiliser management. To date, many canopy multispectral indices have been proposed as indicators for CNC; however, many of these indices have also shown sensitivity to biomass and their performance drops at high biomass levels. Dependence on growth stage, season, or other environmental conditions limits their efficacy as generalized CNC indices. The objectives of this study were to assess the robustness of popular CNC indices across a wide range of biomass levels and fertiliser application levels; and for two contrasting seasons – winter and summer. To achieve this, we analysed the efficacy of seven canopy nitrogen indices, including canopy chlorophyll content index (CCCI), together with eleven other commonly used spectral indices. We used canopy level solar-induced hyperspectral reflectance data acquired using a hand-held optical spectroradiometer across four growth stages in winter (May-June 2018) and four in summer (January-February 2019) from an experimental field of irrigated perennial ryegrass with variable N application in Victoria, Australia. The field contained 40 plots, each with one of eight different N treatments. Almost all the indices exhibited similar correlation to CNC (%) when applied to individual stages (days) in both winter and summer; however, relationships between CNC and individual indices varied significantly between stages. We obtained similar results for canopy biomass. When the data across the entire range of growth stages and seasons were combined, the correlations between most canopy nitrogen indices and CNC became weak (R2 < 0.25, 0.9% ≤ RMSE ≤ 1.0%). PRI exhibited the highest correlation with CNC (R2 = 0.58, RMSE = 0.7%) for the combined data set. Even so, PRI's association with CNC and canopy biomass changed with the season. Most indices responded to both CNC and biomass simultaneously, and this confounds the estimation of CNC due to strong but growth stage-specific relationships between CNC and canopy biomass. This study shows that it is important to consider a wide range of conditions when evaluating multispectral CNC indices.
  • Item
    Thumbnail Image
    A Bayesian approach to understanding the key factors influencing temporal variability in stream water quality - a case study in the Great Barrier Reef catchments
    Liu, S ; Ryu, D ; Webb, JA ; Lintern, A ; Guo, D ; Waters, D ; Western, AW (COPERNICUS GESELLSCHAFT MBH, 2021-05-20)
    Abstract. Stream water quality is highly variable both across space and time. Water quality monitoring programmes have collected a large amount of data that provide a good basis for investigating the key drivers of spatial and temporal variability. Event-based water quality monitoring data in the Great Barrier Reef catchments in northern Australia provide an opportunity to further our understanding of water quality dynamics in subtropical and tropical regions. This study investigated nine water quality constituents, including sediments, nutrients and salinity, with the aim of (1) identifying the influential environmental drivers of temporal variation in flow event concentrations and (2) developing a modelling framework to predict the temporal variation in water quality at multiple sites simultaneously. This study used a hierarchical Bayesian model averaging framework to explore the relationship between event concentration and catchment-scale environmental variables (e.g. runoff, rainfall and groundcover conditions). Key factors affecting the temporal changes in water quality varied among constituent concentrations and between catchments. Catchment rainfall and runoff affected in-stream particulate constituents, while catchment wetness and vegetation cover had more impact on dissolved nutrient concentration and salinity. In addition, in large dry catchments, antecedent catchment soil moisture and vegetation had a large influence on dissolved nutrients, which highlights the important effect of catchment hydrological connectivity on pollutant mobilisation and delivery.
  • Item
    Thumbnail Image
    A New Drought Index for Soil Moisture Monitoring Based on MPDI-NDVI Trapezoid Space Using MODIS Data
    Tao, L ; Ryu, D ; Western, A ; Boyd, D (MDPI, 2021-01)
    The temperature vegetation dryness index (TVDI) has been commonly implemented to estimate regional soil moisture in arid and semi-arid regions. However, the parameterization of the dry edge in the TVDI model is performed with a constraint to define the maximum water stress conditions. Mismatch of the spatial scale between visible and thermal bands retrieved from remotely sensed data and terrain variations also affect the effectiveness of the TVDI. Therefore, this study proposed a new drought index named the condition vegetation drought index (CVDI) to monitor the temporal and spatial variations of soil moisture status by substituting the land surface temperature (LST) with the modified perpendicular drought index (MPDI). In situ soil moisture observations at crop and pasture sites in Victoria were used to validate the effectiveness of the CVDI. The results indicate that the dry and wet edges in the parameterization scheme of the CVDI formed a better-defined trapezoid shape than that of the TVDI. Compared with the MPDI and TVDI for soil moisture monitoring at crop sites, the CVDI exhibited a performance superior to the MPDI and TVDI in most days where the coefficients of determination (R2) achieved can reach to 0.67 on DOY023, 137, 274 and 0.71 on DOY 322 and reproduced more accurate spatial and seasonal variation of soil moisture. Moreover, the CVDI showed higher correlation with the Australian Water Resource Assessment Landscape (AWRA-L) soil moisture product on temporal scales. The R2 can reach to 0.69 and the root mean square error (RMSE) is also much better than that of the MPDI and TVDI. Overall, it can be concluded that the CVDI appears to be a feasible method and can be successfully used in regional soil moisture monitoring.
  • Item
    Thumbnail Image
    Improving the representation of cropland sites in the Community Land Model (CLM) version 5.0
    Boas, T ; Bogena, H ; Gruenwald, T ; Heinesch, B ; Ryu, D ; Schmidt, M ; Vereecken, H ; Western, A ; Franssen, H-JH (COPERNICUS GESELLSCHAFT MBH, 2021-01-28)
    Abstract. The incorporation of a comprehensive crop module in land surface models offers the possibility to study the effect of agricultural land use and land management changes on the terrestrial water, energy, and biogeochemical cycles. It may help to improve the simulation of biogeophysical and biogeochemical processes on regional and global scales in the framework of climate and land use change. In this study, the performance of the crop module of the Community Land Model version 5 (CLM5) was evaluated at point scale with site-specific field data focusing on the simulation of seasonal and inter-annual variations in crop growth, planting and harvesting cycles, and crop yields, as well as water, energy, and carbon fluxes. In order to better represent agricultural sites, the model was modified by (1) implementing the winter wheat subroutines following Lu et al. (2017) in CLM5; (2) implementing plant-specific parameters for sugar beet, potatoes, and winter wheat, thereby adding the two crop functional types (CFTs) for sugar beet and potatoes to the list of actively managed crops in CLM5; and (3) introducing a cover-cropping subroutine that allows multiple crop types on the same column within 1 year. The latter modification allows the simulation of cropping during winter months before usual cash crop planting begins in spring, which is an agricultural management technique with a long history that is regaining popularity as it reduces erosion and improves soil health and carbon storage and is commonly used in the regions evaluated in this study. We compared simulation results with field data and found that both the new crop-specific parameterization and the winter wheat subroutines led to a significant simulation improvement in terms of energy fluxes (root-mean-square error, RMSE, reduction for latent and sensible heat by up to 57 % and 59 %, respectively), leaf area index (LAI), net ecosystem exchange, and crop yield (up to 87 % improvement in winter wheat yield prediction) compared with default model results. The cover-cropping subroutine yielded a substantial improvement in representation of field conditions after harvest of the main cash crop (winter season) in terms of LAI magnitudes, seasonal cycle of LAI, and latent heat flux (reduction of wintertime RMSE for latent heat flux by 42 %). Our modifications significantly improved model simulations and should therefore be applied in future studies with CLM5 to improve regional yield predictions and to better understand large-scale impacts of agricultural management on carbon, water, and energy fluxes.
  • Item
    Thumbnail Image
    Improving the representation of cropland sites in the Community Land Model (CLM) version 5.0
    Boas, T ; Bogena, H ; Grünwald, T ; Heinesch, B ; Ryu, D ; Schmidt, M ; Vereecken, H ; Western, A ; Hendricks-Franssen, H-J (Copernicus Publications, 2020)
    The incorporation of a comprehensive crop module in land surface models offers the possibility to study the effect of agricultural land use and land management changes on the terrestrial water, energy and biogeochemical cycles. It may help to improve the simulation of biogeophysical and biogeochemical processes on regional and global scales in the framework of climate and land use change. In this study, the performance of the crop module of the Community Land Model version 5 (CLM5) was evaluated at point scale with site specific field data focussing on the simulation of seasonal and inter-annual variations in crop growth, planting and harvesting cycles, and crop yields as well as water, energy and carbon fluxes. In order to better represent agricultural sites, the model was modified by (1) implementing the winter wheat subroutines after Lu et al. (2017) in CLM5; (2) implementing plant specific parameters for sugar beet, potatoes and winter wheat, thereby adding these crop functional types (CFT) to the list of actively managed crops in CLM5; (3) introducing a cover cropping subroutine that allows multiple crop types on the same column within one year. The latter modification allows the simulation of cropping during winter months before usual cash crop planting begins in spring, which is a common agricultural management technique in humid and sub-humid regions. We compared simulation results with field data and found that both the parameterization of the CFTs, as well as the winter wheat subroutines, led to a significant simulation improvement in terms of energy fluxes, leaf area index (LAI), net ecosystem exchange (RMSE reduction for latent and sensible heat by up to 57 % and 59 % respectively) and crop yield (up to 87 % improvement in winter wheat yield prediction) compared with default model results. The cover cropping subroutine yielded a substantial improvement in representation of field conditions after harvest of the main cash crop (winter season) in terms of LAI curve and latent heat flux (reduction of winter time RMSE for latent heat flux by 42 %). We anticipate that our model modifications offer opportunities to improve yield predictions, to study the effects of large-scale cover cropping on energy fluxes, soil carbon and nitrogen pools, and soil water storage in future studies with CLM5.