Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 15
  • Item
    Thumbnail Image
    A Bayesian approach to understanding the key factors influencing temporal variability in stream water quality: a case study in the Great Barrier Reef catchments
    Liu, S ; Ryu, D ; Webb, JA ; Lintern, A ; Guo, D ; Waters, D ; Western, AW ( 2021-01-12)
    Abstract. Stream water quality is highly variable both across space and time. Water quality monitoring programs have collected a large amount of data that provide a good basis to investigate the key drivers of spatial and temporal variability. Event-based water quality monitoring data in the Great Barrier Reef catchments in northern Australia provides an opportunity to further our understanding of water quality dynamics in sub-tropical and tropical regions. This study investigated nine water quality constituents, including sediments, nutrients and salinity, with the aim of: 1) identifying the influential environmental drivers of temporal variation in flow event concentrations; and 2) developing a modelling framework to predict the temporal variation in water quality at multiple sites simultaneously. This study used a hierarchical Bayesian model averaging framework to explore the relationship between event concentration and catchment-scale environmental variables (e.g., runoff, rainfall and groundcover conditions). Key factors affecting the temporal changes in water quality varied among constituent concentrations, as well as between catchments. Catchment rainfall and runoff affected in-stream particulate constituents, while catchment wetness and vegetation cover had more impact on dissolved nutrient concentration and salinity. In addition, in large dry catchments, antecedent catchment soil moisture and vegetation had a large influence on dissolved nutrients, which highlights the important effect of catchment hydrological connectivity on pollutant mobilisation and delivery.
  • Item
    Thumbnail Image
    A multi-model approach to assessing the impacts of catchment characteristics on spatial water quality in the Great Barrier Reef catchments
    Liu, S ; Ryu, D ; Webb, JA ; Lintern, A ; Guo, D ; Waters, D ; Western, AW (ELSEVIER SCI LTD, 2021-05-14)
    Water quality monitoring programs often collect large amounts of data with limited attention given to the assessment of the dominant drivers of spatial and temporal water quality variations at the catchment scale. This study uses a multi-model approach: a) to identify the influential catchment characteristics affecting spatial variability in water quality; and b) to predict spatial variability in water quality more reliably and robustly. Tropical catchments in the Great Barrier Reef (GBR) area, Australia, were used as a case study. We developed statistical models using 58 catchment characteristics to predict the spatial variability in water quality in 32 GBR catchments. An exhaustive search method coupled with multi-model inference approaches were used to identify important catchment characteristics and predict the spatial variation in water quality across catchments. Bootstrapping and cross-validation approaches were used to assess the uncertainty in identified important factors and robustness of multi-model structure, respectively. The results indicate that water quality variables were generally most influenced by the natural characteristics of catchments (e.g., soil type and annual rainfall), while anthropogenic characteristics (i.e., land use) also showed significant influence on dissolved nutrient species (e.g., NOX, NH4 and FRP). The multi-model structures developed in this work were able to predict average event-mean concentration well, with Nash-Sutcliffe coefficient ranging from 0.68 to 0.96. This work provides data-driven evidence for catchment managers, which can help them develop effective water quality management strategies.
  • Item
  • Item
    Thumbnail Image
    Using short-term ensemble weather forecast to evaluate outcomes of irrigation
    Guo, D ; Western, A ; Wang, Q ; Ryu, D ; Moller, P ; Aughton, D ( 2021-03-03)
  • Item
    Thumbnail Image
    Improving the representation of cropland sites in the Community Land Model (CLM) version 5.0
    Boas, T ; Bogena, H ; Grünwald, T ; Heinesch, B ; Ryu, D ; Schmidt, M ; Vereecken, H ; Western, A ; Hendricks-Franssen, H-J ( 2021-03-04)
  • Item
    Thumbnail Image
    Enhancing the Accuracy and Temporal Transferability of Irrigated Cropping Field Classification Using Optical Remote Sensing Imagery
    Gao, Z ; Guo, D ; Ryu, D ; Western, AW (MDPI, 2022-02-01)
    Mapping irrigated areas using remotely sensed imagery has been widely applied to support agricultural water management; however, accuracy is often compromised by the in-field heterogeneity of and interannual variability in crop conditions. This paper addresses these key issues. Two classification methods were employed to map irrigated fields using normalized difference vegetation index (NDVI) values derived from Landsat 7 and Landsat 8: a dynamic thresholding method (method one) and a random forest method (method two). To improve the representativeness of field-level NDVI aggregates, which are the key inputs in our methods, a Gaussian mixture model (GMM)-based filtering approach was adopted to remove noncrop pixels (e.g., trees and bare soils) and mixed pixels along the field boundary. To improve the temporal transferability of method one we dynamically determined the threshold value to account for the impact of interannual weather variability based on the dynamic range of NDVI values. In method two an innovative training sample pool was designed for the random forest modeling to enable automatic calibration for each season, which contributes to consistent performance across years. The irrigated field mapping was applied to a major irrigation district in Australia from 2011 to 2018, for summer and winter cropping seasons separately. The results showed that using GMM-based filtering can markedly improve field-level data quality and avoid up to 1/3 of omission errors for irrigated fields. Method two showed superior performance, exhibiting consistent and good accuracy (kappa > 0.9) for both seasons. The classified maps in wet winter seasons should be used with caution, because rainfall alone can largely meet plant water requirements, leaving the contribution of irrigation to the surface spectral signature weak. The approaches introduced are transferable to other areas, can support multiyear irrigated area mapping with high accuracy, and significantly reduced model development effort.
  • Item
    Thumbnail Image
    Parsimonious Gap-Filling Models for Sub-Daily Actual Evapotranspiration Observations from Eddy-Covariance Systems
    Guo, D ; Parehkar, A ; Ryu, D ; Wang, QJ ; Western, AW (MDPI, 2022-03-01)
    Missing data and low data quality are common issues in field observations of actual evapotranspiration (ETa) from eddy-covariance systems, which necessitates the need for gap-filling techniques to improve data quality and utility for further analyses. A number of models have been proposed to fill temporal gaps in ETa or latent heat flux observations. However, existing gap-filling approaches often use multi-variate models that rely on relationships between ETa and other meteorological and flux variables, highlighting a critical lack of parsimonious gap-filling models. This study aims to develop and evaluate parsimonious approaches to fill gaps in ETa observations. We adapted three gap-filling models previously used for other meteorological variables but never applied to infill sub-daily ETa or flux observations from eddy-covariance systems before. All three models are solely based on the observed diurnal patterns in the ETa data, which infill gaps in sub-daily data with sinusoidal functions (Sinusoidal), smoothing functions (Smoothing) and pattern matching (MaxCor) approaches, respectively. We presented a systematic approach for model evaluation, considering multiple patterns of data gaps during different times of the day. The three gap-filling models were evaluated together with another benchmarking gap-filling model, mean diurnal variation (MDV) that has been commonly used and has similar data requirement. We used a case study with field measurements from an EC system over summer 2020–2021, at a maize field in southeastern Australia. We identified the MaxCor model as the best gap-filling model, which informs the diurnal pattern of the day to infill by using another day with similar temporal patterns and complete data. Following the MaxCor model, the MDV and the Sinusoidal models show comparable performances. We further discussed the infilling models in terms of their dependence on data availability and their suitability for different practical situations. The MaxCor model relies on high data availability for both days with complete data and the available records within each day to infill. The Sinusoidal model does not rely on any day with complete data, which makes it the ideal choice in situations where days with complete records are limited.
  • Item
    Thumbnail Image
    Which multispectral indices robustly measure canopy nitrogen across seasons: Lessons from an irrigated pasture crop
    Patel, MK ; Ryu, D ; Western, AW ; Suter, H ; Young, IM (ELSEVIER SCI LTD, 2021-02-12)
    In precision farming, accurate estimation of canopy nitrogen concentration (CNC) is valuable for effective crop growth monitoring and nitrogen (N) fertiliser management. To date, many canopy multispectral indices have been proposed as indicators for CNC; however, many of these indices have also shown sensitivity to biomass and their performance drops at high biomass levels. Dependence on growth stage, season, or other environmental conditions limits their efficacy as generalized CNC indices. The objectives of this study were to assess the robustness of popular CNC indices across a wide range of biomass levels and fertiliser application levels; and for two contrasting seasons – winter and summer. To achieve this, we analysed the efficacy of seven canopy nitrogen indices, including canopy chlorophyll content index (CCCI), together with eleven other commonly used spectral indices. We used canopy level solar-induced hyperspectral reflectance data acquired using a hand-held optical spectroradiometer across four growth stages in winter (May-June 2018) and four in summer (January-February 2019) from an experimental field of irrigated perennial ryegrass with variable N application in Victoria, Australia. The field contained 40 plots, each with one of eight different N treatments. Almost all the indices exhibited similar correlation to CNC (%) when applied to individual stages (days) in both winter and summer; however, relationships between CNC and individual indices varied significantly between stages. We obtained similar results for canopy biomass. When the data across the entire range of growth stages and seasons were combined, the correlations between most canopy nitrogen indices and CNC became weak (R2 < 0.25, 0.9% ≤ RMSE ≤ 1.0%). PRI exhibited the highest correlation with CNC (R2 = 0.58, RMSE = 0.7%) for the combined data set. Even so, PRI's association with CNC and canopy biomass changed with the season. Most indices responded to both CNC and biomass simultaneously, and this confounds the estimation of CNC due to strong but growth stage-specific relationships between CNC and canopy biomass. This study shows that it is important to consider a wide range of conditions when evaluating multispectral CNC indices.
  • Item
    Thumbnail Image
    A Bayesian approach to understanding the key factors influencing temporal variability in stream water quality - a case study in the Great Barrier Reef catchments
    Liu, S ; Ryu, D ; Webb, JA ; Lintern, A ; Guo, D ; Waters, D ; Western, AW (COPERNICUS GESELLSCHAFT MBH, 2021-05-20)
    Abstract. Stream water quality is highly variable both across space and time. Water quality monitoring programmes have collected a large amount of data that provide a good basis for investigating the key drivers of spatial and temporal variability. Event-based water quality monitoring data in the Great Barrier Reef catchments in northern Australia provide an opportunity to further our understanding of water quality dynamics in subtropical and tropical regions. This study investigated nine water quality constituents, including sediments, nutrients and salinity, with the aim of (1) identifying the influential environmental drivers of temporal variation in flow event concentrations and (2) developing a modelling framework to predict the temporal variation in water quality at multiple sites simultaneously. This study used a hierarchical Bayesian model averaging framework to explore the relationship between event concentration and catchment-scale environmental variables (e.g. runoff, rainfall and groundcover conditions). Key factors affecting the temporal changes in water quality varied among constituent concentrations and between catchments. Catchment rainfall and runoff affected in-stream particulate constituents, while catchment wetness and vegetation cover had more impact on dissolved nutrient concentration and salinity. In addition, in large dry catchments, antecedent catchment soil moisture and vegetation had a large influence on dissolved nutrients, which highlights the important effect of catchment hydrological connectivity on pollutant mobilisation and delivery.
  • Item
    Thumbnail Image
    A New Drought Index for Soil Moisture Monitoring Based on MPDI-NDVI Trapezoid Space Using MODIS Data
    Tao, L ; Ryu, D ; Western, A ; Boyd, D (MDPI, 2021-01-01)
    The temperature vegetation dryness index (TVDI) has been commonly implemented to estimate regional soil moisture in arid and semi-arid regions. However, the parameterization of the dry edge in the TVDI model is performed with a constraint to define the maximum water stress conditions. Mismatch of the spatial scale between visible and thermal bands retrieved from remotely sensed data and terrain variations also affect the effectiveness of the TVDI. Therefore, this study proposed a new drought index named the condition vegetation drought index (CVDI) to monitor the temporal and spatial variations of soil moisture status by substituting the land surface temperature (LST) with the modified perpendicular drought index (MPDI). In situ soil moisture observations at crop and pasture sites in Victoria were used to validate the effectiveness of the CVDI. The results indicate that the dry and wet edges in the parameterization scheme of the CVDI formed a better-defined trapezoid shape than that of the TVDI. Compared with the MPDI and TVDI for soil moisture monitoring at crop sites, the CVDI exhibited a performance superior to the MPDI and TVDI in most days where the coefficients of determination (R2) achieved can reach to 0.67 on DOY023, 137, 274 and 0.71 on DOY 322 and reproduced more accurate spatial and seasonal variation of soil moisture. Moreover, the CVDI showed higher correlation with the Australian Water Resource Assessment Landscape (AWRA-L) soil moisture product on temporal scales. The R2 can reach to 0.69 and the root mean square error (RMSE) is also much better than that of the MPDI and TVDI. Overall, it can be concluded that the CVDI appears to be a feasible method and can be successfully used in regional soil moisture monitoring.