Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    Predicting groundwater recharge for varying land cover and climate conditions - a global meta-study
    Mohan, C ; Western, AW ; Wei, Y ; Saft, M (COPERNICUS GESELLSCHAFT MBH, 2018-05-07)
    Abstract. Groundwater recharge is one of the important factors determining the groundwater development potential of an area. Even though recharge plays a key role in controlling groundwater system dynamics, much uncertainty remains regarding the relationships between groundwater recharge and its governing factors at a large scale. Therefore, this study aims to identify the most influential factors of groundwater recharge, and to develop an empirical model to estimate diffuse rainfall recharge at a global scale. Recharge estimates reported in the literature from various parts of the world (715 sites) were compiled and used in model building and testing exercises. Unlike conventional recharge estimates from water balance, this study used a multimodel inference approach and information theory to explain the relationship between groundwater recharge and influential factors, and to predict groundwater recharge at 0.5∘ resolution. The results show that meteorological factors (precipitation and potential evapotranspiration) and vegetation factors (land use and land cover) had the most predictive power for recharge. According to the model, long-term global average annual recharge (1981–2014) was 134 mm yr−1 with a prediction error ranging from −8 to 10 mm yr−1 for 97.2 % of cases. The recharge estimates presented in this study are unique and more reliable than the existing global groundwater recharge estimates because of the extensive validation carried out using both independent local estimates collated from the literature and national statistics from the Food and Agriculture Organization (FAO). In a water-scarce future driven by increased anthropogenic development, the results from this study will aid in making informed decisions about groundwater potential at a large scale.
  • Item
  • Item
  • Item
    Thumbnail Image
    Predicting groundwater recharge for varying landcover and climate conditions: a global meta-study
    Mohan, C ; Western, AW ; Wei, Y ; Saft, M (Copernicus Publications, 2018)
    Groundwater recharge is one of the important factors determining the groundwater development potential of an area. Even though recharge plays a key role in controlling groundwater system dynamics, much uncertainty remains regarding the relationships between groundwater recharge and its governing factors at a large scale. The aims of this study were to identify the most influential factors on groundwater recharge, and to develop an empirical model to estimate diffuse rainfall recharge at a global-scale. Recharge estimates reported in the literature from various parts of the world (715 sites) were compiled and used in model building and testing exercises. Unlike conventional recharge estimates from water balance, this study used a multimodel inference approach and information theory to explain the relation between groundwater recharge and influential factors, and to predict groundwater recharge at 0.50 resolution. The results show that meteorological factors (precipitation and potential evapotranspiration) and vegetation factors (land use and land cover) had the most predictive power for recharge. According to the model, long term global average annual recharge (1981–2014) was 134 mm/yr with a prediction error ranging from −8 mm/yr to 10 mm/yr for 97.2 % of cases. The recharge estimates presented in this study are unique and more reliable than the existing global groundwater recharge estimates because of the extensive validation carried out using both independent local estimates collated from the literature and national statistics from Food and Agriculture Organisation (FAO). In a water scarce future driven by increased anthropogenic development, the results from this study will aid in making informed decision about groundwater potential at a large scale.
  • Item
    Thumbnail Image
    Many Commonly Used Rainfall‐Runoff Models Lack Long, Slow Dynamics: Implications for Runoff Projections
    Fowler, K ; Knoben, W ; Peel, M ; Peterson, T ; Ryu, D ; Saft, M ; Seo, K ; Western, A (American Geophysical Union (AGU), 2020-05)
    Evidence suggests that catchment state variables such as groundwater can exhibit multiyear trends. This means that their state may reflect not only recent climatic conditions but also climatic conditions in past years or even decades. Here we demonstrate that five commonly used conceptual “bucket” rainfall‐runoff models are unable to replicate multiyear trends exhibited by natural systems during the “Millennium Drought” in south‐east Australia. This causes an inability to extrapolate to different climatic conditions, leading to poor performance in split sample tests. Simulations are examined from five models applied in 38 catchments, then compared with groundwater data from 19 bores and Gravity Recovery and Climate Experiment data for two geographic regions. Whereas the groundwater and Gravity Recovery and Climate Experiment data decrease from high to low values gradually over the duration of the 13‐year drought, the model storages go from high to low values in a typical seasonal cycle. This is particularly the case in the drier, flatter catchments. Once the drought begins, there is little room for decline in the simulated storage, because the model “buckets” are already “emptying” on a seasonal basis. Since the effects of sustained dry conditions cannot accumulate within these models, we argue that they should not be used for runoff projections in a drying climate. Further research is required to (a) improve conceptual rainfall‐runoff models, (b) better understand circumstances in which multiyear trends in state variables occur, and (c) investigate links between these multiyear trends and changes in rainfall‐runoff relationships in the context of a changing climate.
  • Item
    Thumbnail Image
    The influence of multiyear drought on the annual rainfall-runoff relationship: An Australian perspective
    Saft, M ; Western, AW ; Zhang, L ; Peel, MC ; Potter, NJ (AMER GEOPHYSICAL UNION, 2015-04-01)
  • Item
    Thumbnail Image
    Bias in streamflow projections due to climate-induced shifts in catchment response
    Saft, M ; Peel, MC ; Western, AW ; Perraud, J-M ; Zhang, L (AMER GEOPHYSICAL UNION, 2016-02-28)