Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    A multi-model approach to assessing the impacts of catchment characteristics on spatial water quality in the Great Barrier Reef catchments
    Liu, S ; Ryu, D ; Webb, JA ; Lintern, A ; Guo, D ; Waters, D ; Western, AW (ELSEVIER SCI LTD, 2021-05-14)
    Water quality monitoring programs often collect large amounts of data with limited attention given to the assessment of the dominant drivers of spatial and temporal water quality variations at the catchment scale. This study uses a multi-model approach: a) to identify the influential catchment characteristics affecting spatial variability in water quality; and b) to predict spatial variability in water quality more reliably and robustly. Tropical catchments in the Great Barrier Reef (GBR) area, Australia, were used as a case study. We developed statistical models using 58 catchment characteristics to predict the spatial variability in water quality in 32 GBR catchments. An exhaustive search method coupled with multi-model inference approaches were used to identify important catchment characteristics and predict the spatial variation in water quality across catchments. Bootstrapping and cross-validation approaches were used to assess the uncertainty in identified important factors and robustness of multi-model structure, respectively. The results indicate that water quality variables were generally most influenced by the natural characteristics of catchments (e.g., soil type and annual rainfall), while anthropogenic characteristics (i.e., land use) also showed significant influence on dissolved nutrient species (e.g., NOX, NH4 and FRP). The multi-model structures developed in this work were able to predict average event-mean concentration well, with Nash-Sutcliffe coefficient ranging from 0.68 to 0.96. This work provides data-driven evidence for catchment managers, which can help them develop effective water quality management strategies.
  • Item
    Thumbnail Image
    The politicisation of science in the Murray-Darling Basin, Australia: discussion of 'Scientific integrity, public policy and water governance'
    Stewardson, MJ ; Bond, N ; Brookes, J ; Capon, S ; Dyer, F ; Grace, M ; Frazier, P ; Hart, B ; Horne, A ; King, A ; Langton, M ; Nathan, R ; Rutherfurd, I ; Sheldon, F ; Thompson, R ; Vertessy, R ; Walker, G ; Wang, QJ ; Wassens, S ; Watts, R ; Webb, A ; Western, AW (Taylor & Francis, 2021-10-30)
    Many water scientists aim for their work to inform water policy and management, and in pursuit of this objective, they often work alongside government water agencies to ensure their research is relevant, timely and communicated effectively. A paper in this issue, examining 'Science integrity, public policy and water governance in the Murray-Darling Basin, Australia’, suggests that a large group of scientists, who work on water management in the Murray-Darling Basin (MDB) including the Basin Plan, have been subject to possible ‘administrative capture'. Specifically, it is suggested that they have advocated for policies favoured by government agencies with the objective of gaining personal benefit, such as increased research funding. We examine evidence for this claim and conclude that it is not justified. The efforts of scientists working alongside government water agencies appear to have been misinterpreted as possible administrative capture. Although unsubstantiated, this claim does indicate that the science used in basin water planning is increasingly caught up in the politics of water management. We suggest actions to improve science-policy engagement in basin planning, to promote constructive debate over contested views and avoid the over-politicisation of basin science.
  • Item
    Thumbnail Image
    Key factors influencing differences in stream water quality across space
    Lintern, A ; Webb, JA ; Ryu, D ; Liu, S ; Bende-Michl, U ; Waters, D ; Leahy, P ; Wilson, P ; Western, AW (WILEY, 2018-01-01)
  • Item
    Thumbnail Image
    A Bayesian approach to understanding the key factors influencing temporal variability in stream water quality - a case study in the Great Barrier Reef catchments
    Liu, S ; Ryu, D ; Webb, JA ; Lintern, A ; Guo, D ; Waters, D ; Western, AW (COPERNICUS GESELLSCHAFT MBH, 2021-05-20)
    Abstract. Stream water quality is highly variable both across space and time. Water quality monitoring programmes have collected a large amount of data that provide a good basis for investigating the key drivers of spatial and temporal variability. Event-based water quality monitoring data in the Great Barrier Reef catchments in northern Australia provide an opportunity to further our understanding of water quality dynamics in subtropical and tropical regions. This study investigated nine water quality constituents, including sediments, nutrients and salinity, with the aim of (1) identifying the influential environmental drivers of temporal variation in flow event concentrations and (2) developing a modelling framework to predict the temporal variation in water quality at multiple sites simultaneously. This study used a hierarchical Bayesian model averaging framework to explore the relationship between event concentration and catchment-scale environmental variables (e.g. runoff, rainfall and groundcover conditions). Key factors affecting the temporal changes in water quality varied among constituent concentrations and between catchments. Catchment rainfall and runoff affected in-stream particulate constituents, while catchment wetness and vegetation cover had more impact on dissolved nutrient concentration and salinity. In addition, in large dry catchments, antecedent catchment soil moisture and vegetation had a large influence on dissolved nutrients, which highlights the important effect of catchment hydrological connectivity on pollutant mobilisation and delivery.
  • Item
    Thumbnail Image
    A data-based predictive model for spatiotemporal variability in stream water quality
    Guo, D ; Lintern, A ; Webb, JA ; Ryu, D ; Bende-Michl, U ; Liu, S ; Western, AW (COPERNICUS GESELLSCHAFT MBH, 2020-02-24)
    Abstract. Our current capacity to model stream water quality is limited – particularly at large spatial scales across multiple catchments. To address this, we developed a Bayesian hierarchical statistical model to simulate the spatiotemporal variability in stream water quality across the state of Victoria, Australia. The model was developed using monthly water quality monitoring data over 21 years and across 102 catchments (which span over 130 000 km2). The modeling focused on six key water quality constituents: total suspended solids (TSS), total phosphorus (TP), filterable reactive phosphorus (FRP), total Kjeldahl nitrogen (TKN), nitrate–nitrite (NOx) and electrical conductivity (EC). The model structure was informed by knowledge of the key factors driving water quality variation, which were identified in two preceding studies using the same dataset. Apart from FRP, which is hardly explained (19.9 %), the model explains 38.2 % (NOx) to 88.6 % (EC) of the total spatiotemporal variability in water quality. Across constituents, the model generally captures over half of the observed spatial variability; the temporal variability remains largely unexplained across all catchments, although long-term trends are well captured. The model is best used to predict proportional changes in water quality on a Box–Cox-transformed scale, but it can have substantial bias if used to predict absolute values for high concentrations. This model can assist catchment management by (1) identifying hot spots and hot moments for waterway pollution; (2) predicting the effects of catchment changes on water quality, e.g., urbanization or forestation; and (3) identifying and explaining major water quality trends and changes. Further model improvements should focus on the following: (1) alternative statistical model structures to improve fitting for truncated data (for constituents where a large amount of data fall below the detection limit); and (2) better representation of nonconservative constituents (e.g., FRP) by accounting for important biogeochemical processes.
  • Item
    Thumbnail Image
    What Are the Key Catchment Characteristics Affecting Spatial Differences in Riverine Water Quality?
    Lintern, A ; Webb, JA ; Ryu, D ; Liu, S ; Waters, D ; Leahy, P ; Bende-Michl, U ; Western, AW (AMER GEOPHYSICAL UNION, 2018-10-01)
  • Item
    Thumbnail Image
    Characterisation of spatial variability in water quality in the Great Barrier Reef catchments using multivariate statistical analysis
    Liu, S ; Ryu, D ; Webb, JA ; Lintern, A ; Waters, D ; Guo, D ; Western, AW (PERGAMON-ELSEVIER SCIENCE LTD, 2018-12-01)
    Water quality monitoring is important to assess changes in inland and coastal water quality. The focus of this study was to improve understanding of the spatial component of spatial-temporal water quality dynamics, particularly the spatial variability in water quality and the association between this spatial variability and catchment characteristics. A dataset of nine water quality constituents collected from 32 monitoring sites over a 11-year period (2006-2016), across the Great Barrier Reef catchments (Queensland, Australia), were evaluated by multivariate techniques. Two clusters were identified, which were strongly associated with catchment characteristics. A two-step Principal Component Analysis/Factor Analysis revealed four groupings of constituents with similar spatial pattern and allowed the key catchment characteristics affecting water quality to be determined. These findings provide a more nuanced view of spatial variations in water quality compared with previous understanding and an improved basis for water quality management to protect nearshore marine ecosystem.
  • Item
    Thumbnail Image
    Key Factors Affecting Temporal Variability in Stream Water Quality
    Guo, D ; Lintern, A ; Webb, JA ; Ryu, D ; Liu, S ; Bende-Michl, U ; Leahy, P ; Wilson, P ; Western, AW (AMER GEOPHYSICAL UNION, 2019-01-01)
    Understanding the factors that influence temporal variability in water quality is critical for designing water quality management strategies. In this study, we explore the key factors that affect temporal variability in stream water quality across multiple catchments using a Bayesian hierarchical model. We apply this model to a case study data set consisting of monthly water quality measurements obtained over a 20‐year period from 102 water quality monitoring sites in the state of Victoria (Southeast Australia). We investigate six water quality constituents: total suspended solids, total phosphorus, filterable reactive phosphorus, total Kjeldahl nitrogen, nitrate‐nitrite (NOx), and electrical conductivity. We find that same‐day streamflow has the greatest effect on water quality variability for all constituents. Additional important predictors include soil moisture, antecedent streamflow, vegetation cover, and water temperature. Overall, the models do not explain a large proportion of temporal variation in water quality, with Nash‐Sutcliffe coefficients lower than 0.49. However, when considering performance on a site‐by‐site basis, we see high model performance in some locations, with Nash‐Sutcliffe coefficients of up to 0.8 for NOx and electrical conductivity. The effect of the temporal predictors on water quality varies between sites, which should be explored further for potential spatial patterns in future studies. There is also potential for further extension of these temporal variability models into a predictive spatiotemporal model of riverine constituent concentrations, which will be a useful tool to inform decision making for catchment water quality management.