Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    A rational function approach for estimating mean annual evapotranspiration
    Zhang, L ; Hickel, K ; Dawes, WR ; Chiew, FHS ; Western, AW ; Briggs, PR (AMER GEOPHYSICAL UNION, 2004-02-05)
    Mean annual evapotranspiration from a catchment is determined largely by precipitation and potential evapotranspiration; characteristics of the catchment (e.g., soil, topography, etc.) play only a secondary role. It has been shown that the ratio of mean annual potential evapotranspiration to precipitation (referred as the index of dryness) can be used to estimate mean annual evapotranspiration by using one additional parameter. This study evaluates the effects of climatic and catchment characteristics on the partitioning of mean annual precipitation into evapotranspiration using a rational function approach, which was developed based on phenomenological considerations. Over 470 catchments worldwide with long‐term records of precipitation, potential evapotranspiration, and runoff were considered, and results show that model estimates of mean annual evapotranspiration agree well with observed evapotranspiration taken as the difference between precipitation and runoff. The mean absolute error between modeled and observed evapotranspiration was 54 mm, and the model was able to explain 89% of the variance with a slope of 1.00 through the origin. This indicates that the index of dryness is the most significant variable in determining mean annual evapotranspiration. Results also suggest that forested catchments tend to show higher evapotranspiration than grassed catchments and their evapotranspiration ratio (evapotranspiration divided by precipitation) is most sensitive to changes in catchment characteristics for regions with the index of dryness around 1.0. Additionally, a stepwise regression analysis was performed for over 270 Australian catchments where detailed information of vegetation cover, precipitation characteristics, catchment slopes, and plant available water capacity was available. It is shown that apart from the index of dryness, average storm depth, plant available water capacity, and storm arrival rate are also significant.
  • Item
    Thumbnail Image
    Identifying and quantifying sources of variability in temporal and spatial soil moisture observations
    Wilson, DJ ; Western, AW ; Grayson, RB (American Geophysical Union, 2004-02-20)
    Soil moisture is an important component of the hydrological cycle. It is a control in the partitioning of energy and water related to evapotranspiration and runoff and thereby influences the hydrological response of an area. Characterizing the temporal and spatial distribution of soil moisture has important hydrologic applications, yet soil moisture varies in response to many processes acting over a variety of scales; the relative importance of different temporal and spatial controls on soil moisture is still poorly understood. In this paper we analyze both temporal and spatial soil moisture data empirically for two catchments in Australia and a further three in New Zealand. Hydrological conditions at these field sites covered a wide range over a 2 year period. The ground-based soil moisture data set is unique in its temporal and, in particular, its spatial coverage. Analyses attempt to isolate and quantify different deterministic sources of variability, measurement error, and a remaining unexplained component of variability. Because of limited data (especially relating to soils) we take a pragmatic approach of removing patterns that we can define in time and space (namely, seasonality and terrain) and then analyzing the unexplained variation. We then look for consistent patterns in this unexplained variability and argue that these are related to meteorological conditions, especially precipitation events, in the temporal case, and a combination of soils and vegetation in the spatial case. We were able to explain most of the observed variance in time and space, and the temporal variance was typically 5 times larger than spatial variance. Seasonality is the dominant source of temporal variability at our sites, although this conclusion obviously depends on climate and does not hold where soil water storage is limited. Most importantly, in controlling the distribution of soil moisture in space, the spatial distribution of soils and vegetation seems to be of similar importance to that of topography, a fact often ignored in hydrological modeling, or else surrogate soils patterns are used, but these are often not well correlated to the actual patterns [Grayson and Blöschl, 2000]. Better methods for defining the spatial properties of soils and vegetation as they affect soil moisture patterns are a key challenge.