Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    No Preview Available
    A predictive model for spatio-temporal variability in stream water quality
    Guo, D ; Lintern, A ; Webb, JA ; Ryu, D ; Bende-Michl, U ; Liu, S ; Western, AW ( 2019-07-23)
    Abstract. Degraded water quality in rivers and streams can have large economic, societal and ecological impacts. Stream water quality can be highly variable both over space and time. To develop effective management strategies for riverine water quality, it is critical to be able to predict these spatio-temporal variabilities. However, our current capacity to model stream water quality is limited, particularly at large spatial scales across multiple catchments. This is due to a lack of understanding of the key controls that drive spatio-temporal variabilities of stream water quality. To address this, we developed a Bayesian hierarchical statistical model to analyse the spatio-temporal variability in stream water quality across the state of Victoria, Australia. The model was developed based on monthly water quality monitoring data collected at 102 sites over 21 years. The modelling focused on six key water quality constituents: total suspended solids (TSS), total phosphorus (TP), filterable reactive phosphorus (FRP), total Kjeldahl nitrogen (TKN), nitrate-nitrite (NOx), and electrical conductivity (EC). Among the six constituents, the models explained varying proportions of variation in water quality. EC was the most predictable constituent (88.6 % variability explained) and FRP had the lowest predictive performance (19.9 % variability explained). The models were validated for multiple sets of calibration/validation sites and showed robust performance. Temporal validation revealed a systematic change in the TSS model performance across most catchments since an extended drought period in the study region, highlighting potential shifts in TSS dynamics over the drought. Further improvements in model performance need to focus on: (1) alternative statistical model structures to improve fitting for the low concentration data, especially records below the detection limit; and (2) better representation of non-conservative constituents by accounting for important biogeochemical processes. We also recommend future improvements in water quality monitoring programs which can potentially enhance the model capacity, via: (1) improving the monitoring and assimilation of high-frequency water quality data; and (2) improving the availability of data to capture land use and management changes over time.
  • Item
    Thumbnail Image
    Improving the representation of cropland sites in the Community Land Model (CLM) version 5.0
    Boas, T ; Bogena, H ; Grünwald, T ; Heinesch, B ; Ryu, D ; Schmidt, M ; Vereecken, H ; Western, A ; Hendricks-Franssen, H-J (Copernicus Publications, 2020)
    The incorporation of a comprehensive crop module in land surface models offers the possibility to study the effect of agricultural land use and land management changes on the terrestrial water, energy and biogeochemical cycles. It may help to improve the simulation of biogeophysical and biogeochemical processes on regional and global scales in the framework of climate and land use change. In this study, the performance of the crop module of the Community Land Model version 5 (CLM5) was evaluated at point scale with site specific field data focussing on the simulation of seasonal and inter-annual variations in crop growth, planting and harvesting cycles, and crop yields as well as water, energy and carbon fluxes. In order to better represent agricultural sites, the model was modified by (1) implementing the winter wheat subroutines after Lu et al. (2017) in CLM5; (2) implementing plant specific parameters for sugar beet, potatoes and winter wheat, thereby adding these crop functional types (CFT) to the list of actively managed crops in CLM5; (3) introducing a cover cropping subroutine that allows multiple crop types on the same column within one year. The latter modification allows the simulation of cropping during winter months before usual cash crop planting begins in spring, which is a common agricultural management technique in humid and sub-humid regions. We compared simulation results with field data and found that both the parameterization of the CFTs, as well as the winter wheat subroutines, led to a significant simulation improvement in terms of energy fluxes, leaf area index (LAI), net ecosystem exchange (RMSE reduction for latent and sensible heat by up to 57 % and 59 % respectively) and crop yield (up to 87 % improvement in winter wheat yield prediction) compared with default model results. The cover cropping subroutine yielded a substantial improvement in representation of field conditions after harvest of the main cash crop (winter season) in terms of LAI curve and latent heat flux (reduction of winter time RMSE for latent heat flux by 42 %). We anticipate that our model modifications offer opportunities to improve yield predictions, to study the effects of large-scale cover cropping on energy fluxes, soil carbon and nitrogen pools, and soil water storage in future studies with CLM5.
  • Item
    Thumbnail Image
    Predicting groundwater recharge for varying landcover and climate conditions: a global meta-study
    Mohan, C ; Western, AW ; Wei, Y ; Saft, M (Copernicus Publications, 2018)
    Groundwater recharge is one of the important factors determining the groundwater development potential of an area. Even though recharge plays a key role in controlling groundwater system dynamics, much uncertainty remains regarding the relationships between groundwater recharge and its governing factors at a large scale. The aims of this study were to identify the most influential factors on groundwater recharge, and to develop an empirical model to estimate diffuse rainfall recharge at a global-scale. Recharge estimates reported in the literature from various parts of the world (715 sites) were compiled and used in model building and testing exercises. Unlike conventional recharge estimates from water balance, this study used a multimodel inference approach and information theory to explain the relation between groundwater recharge and influential factors, and to predict groundwater recharge at 0.50 resolution. The results show that meteorological factors (precipitation and potential evapotranspiration) and vegetation factors (land use and land cover) had the most predictive power for recharge. According to the model, long term global average annual recharge (1981–2014) was 134 mm/yr with a prediction error ranging from −8 mm/yr to 10 mm/yr for 97.2 % of cases. The recharge estimates presented in this study are unique and more reliable than the existing global groundwater recharge estimates because of the extensive validation carried out using both independent local estimates collated from the literature and national statistics from Food and Agriculture Organisation (FAO). In a water scarce future driven by increased anthropogenic development, the results from this study will aid in making informed decision about groundwater potential at a large scale.