Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 22
  • Item
    Thumbnail Image
    Detecting structural damage to bridge girders using radar interferometry and computational modelling
    Maizuar, M ; Zhang, L ; Miramini, S ; Mendis, P ; Thompson, RG (JOHN WILEY & SONS LTD, 2017-10)
    The process for assessing the condition of a bridge involves continuously monitoring changes to the material properties, support conditions, and system connectivity throughout its life cycle. It is known that the structural integrity of bridges can be monitored by measuring their vibration responses. However, the relationship between frequency changes and structural damage is still not fully understood. This study presents a bridge condition assessment framework which integrates computational modelling and noncontact radar sensor techniques (i.e., IBIS-S) to predict changes in the natural frequencies of a bridge girder as a result of a range of parameters that govern its structural performance (e.g., elastomeric bearing stiffness, concrete compressive stiffness, and crack propagation). Using a prestressed concrete bridge in Australia as a case study, the research outcomes suggest that vibration monitoring using IBIS-S is an efficient way for detecting the degradation of elastomeric bearing stiffness and shear crack propagation in the support areas that can significantly affect the overall structural integrity of a bridge structure. However, frequency measurements have limited capability for detecting the decrease in the material properties of a bridge girder.
  • Item
    Thumbnail Image
    Bone fracture healing under Ilizarov fixator: Influence of fixator configuration, fracture geometry, and loading
    Ganadhiepan, G ; Miramini, S ; Patel, M ; Mendis, P ; Zhang, L (WILEY, 2019-06-01)
    This study aims to enhance the understanding of the relationship between Ilizarov fixator configuration and its effects on bone fracture healing. Using Taylor spatial frame (TSF) as an example, the roles of critical parameters (ie, TSF ring diameter, wire pre‐tension, fracture gap size, and axial load) that govern fracture healing during the early stages were investigated by using computational modelling in conjunction with mechanical testing involving an advanced 3D optical measurement system. The computational model was first validated using the mechanical test results and then used to simulate mesenchymal stem cell (MSC) differentiations within different regions of the fracture site under various combinations of TSF ring diameter, wire pre‐tension, fracture gap size, and axial load values. Predicted spatially dependent MSC differentiation patterns and the influence of each parameter on differentiations were compared with in vivo results, and good agreement was seen between the two. Gap size was identified as the most influential parameter in MSC differentiation, and the influence of axial loading and TSF configuration (ie, ring diameter and wire pre‐tension) on cell differentiation was seen to be gap size dependent. Most changes in cell differentiation were predicted in the external callus (periosteal), which is the crucial region of the callus in the early stages. However, for small gap sizes (eg, 1 mm), significant changes were predicted in the endosteal callus as well. The study exhibits the potential of computational models in assessing the performance of Ilizarov fixators as well as assisting surgeons in patient‐specific clinical treatment planning.
  • Item
    Thumbnail Image
    A probabilistic study of ground motion simulation for Bangkok soil
    Herath, N ; Mendis, P ; Zhang, L (SPRINGER, 2017-05)
    Due to the soft soil condition, it has been found that buildings in Bangkok locating 200 km away from epicentral of an earthquake can be damaged as a result of high ground motion (e.g. earthquakes of magnitudes 5.3–5.9 in 1983). Because of rapid urban expansion and population growth in cities with soft soil condition, such as Bangkok, the assessment of seismic vulnerability of building structures becomes necessary. The purpose of this study is to quantify variability and develop attenuation and amplification models of ground motions for Bangkok sites. First, by analysing soil profile of Bangkok using Latin Hypercube sampling technique, critical attenuation and amplification characteristics, such as peak ground acceleration, ground motion intensity, frequency content and significant ground duration, were obtained. Then, the statistical information on the attenuation and amplification models of these characteristics was established and used to conduct a series of non-linear seismic analysis of a typical four storey commercial building in Bangkok. The research outcomes demonstrate that the developed models are capable of predicting the damage indices of buildings in Bangkok under different earthquake intensities and epicentral distances.
  • Item
    Thumbnail Image
    Probabilistic modelling of forces of hail
    Perera, S ; Lam, N ; Pathirana, M ; Zhang, L ; Ruan, D ; Gad, E (SPRINGER, 2018-03)
  • Item
    Thumbnail Image
    Role of Dynamic Loading on Early Stage of Bone Fracture Healing
    Ghimire, S ; Miramini, S ; Richardson, M ; Mendis, P ; Zhang, L (SPRINGER, 2018-11)
    After fracture, mesenchymal stem cells (MSCs) and growth factors migrate into the fracture callus to exert their biological actions. Previous studies have indicated that dynamic loading induced tissue deformation and interstitial fluid flow could produce a biomechanical environment which significantly affects the healing outcomes. However, the fundamental relationship between the various loading regimes and different healing outcomes has not still been fully understood. In this study, we present an integrated computational model to investigate the effect of dynamic loading on early stage of bone fracture healing. The model takes into account cell and growth factor transport under dynamic loading, and mechanical stimuli mediated MSC differentiation and tissue production. The developed model was firstly validated by the available experimental data, and then implemented to identify the loading regimes that produce the optimal healing outcomes. Our results demonstrated that dynamic loading enhances MSC and growth factor transport in a spatially dependent manner. For example, compared to free diffusion, dynamic loading could significantly increase MSCs concentration in endosteal zone; and chondrogenic growth factors in both cortical and periosteal zones in callus. Furthermore, there could be an optimal dynamic loading regime (e.g. 10% strain at 1 Hz) which could potentially significant enhance endochondral ossification.
  • Item
    Thumbnail Image
    Application of FRP Bolts in Monitoring the Internal Force of the Rocks Surrounding a Mine-Shield Tunnel
    Liu, Z ; Zhou, C ; Lu, Y ; Yang, X ; Liang, Y ; Zhang, L (MDPI, 2018-09)
    Monitoring the internal force of the rocks surrounding a mine-shield tunnel for the initial support of a mine-shield tunnel, in complex geological and hydrological environments, requires bolts with specific features such as high tensile strength, low shear strength, good insulation and resistance to corrosion. As such, internal force monitoring has become an important issue in safety monitoring for such tunneling projects. In this paper, the adaptability of a mine-shield tunnel project in a corrosive environment is investigated. A fiberglass reinforced plastic (FRP) bolt with high tensile strength, low shear strength, resistance to fatigue, non-conductivity and resistance to corrosion is used as a probe in tandem with an anchor-head dynamometer to monitor the internal force of the rocks surrounding a mine-shield tunnel for initial support. Additionally, solar energy collection technology is introduced to create a remote monitoring system. Using a 2.5 km long railway tunnel located in the northeast of the Pearl River Delta of China as a case study, the present study shows that, compared with a conventional steel bolt, the FRP bolt has advantages, such as avoidance of the risks associated with the shield machine, insulation and resistance to corrosion. As a probe, the response of the FRP bolt to events such as a blasting vibration and a construction disturbance that results in internal changes in the surrounding rock demonstrates a clear pattern that is appropriate for monitoring the internal force of the rocks surrounding a mine-shield tunnel in a corrosive environment. FRP bolt-based monitoring not only provides new technological support for controlling the risk involved in the initial support of a mine-shield tunnel but can also be widely deployed in projects with special requirements for disassembly, conductivity and corrosion.
  • Item
    Thumbnail Image
    Sensitivity Analysis of Geometrical Parameters on the Aerodynamic Performance of Closed-Box Girder Bridges
    Yang, Y ; Zhou, R ; Ge, Y ; Du, Y ; Zhang, L (MDPI, 2018-07)
    In this study, the influence of two critical geometrical parameters (i.e., angles of wind fairing, α; and lower inclined web, β) in the aerodynamic performance of closed-box girder bridges was systematically investigated through conducting a theoretical analysis and wind tunnel testing using laser displacement sensors. The results show that, for a particular inclined web angle β, a closed-box girder with a sharper wind fairing angle of α = 50° has better flutter and vortex-induced vibration (VIV) performance than that with α = 60°, while an inclined web angle of β = 14° produces the best VIV performance. In addition, the results from particle image velocimetry (PIV) tests indicate that a wind fairing angle of α = 50° produces a better flutter performance by inducing a single vortex structure and a balanced distribution of the strength of vorticity in both upper and lower parts of the wake region. Furthermore, two-dimensional three-degrees-of-freedom (2D-3DOF) analysis results demonstrate that the absolute values of Part A (with a reference of flutter derivative A₂*) and Part D (with a reference of A₁*H₃*) generally decrease with the increase of β, while the change of the participation level of heaving degrees of freedom (DOF) in torsion-dominated coupled flutter initially increases, reaches its peak, and then decreases with the increase of β.
  • Item
    Thumbnail Image
    The investigation of fluid flow in cartilage contact gap
    Liao, J ; Smith, DW ; Miramini, S ; Thibbotuwawa, N ; Gardiner, BS ; Zhang, L (ELSEVIER SCIENCE BV, 2019-07)
    Synovial fluid flow in articular joint capsule plays an important role during mixed mode lubrication. However, the actual fluid flow behaviour during cartilage contact has not been fully understood so far. This is due to the difficulties in measuring the gap permeability using conventional experimental techniques. The problem becomes further complicated with consideration of the cartilage surface roughness. Here a validated numerical study was developed to quantify the gap permeability of lateral synovial fluid flow. Both macro- and micro-scale gap flow models were created based on Darcy's law at the macro-scale and the Navier-stokes equation at the micro-scale. To generate model inputs, the cartilage topography was numerically synthesised based on the experimental measurements of bovine medial tibia cartilage surface roughness using Dektak Stylus Profilers. The experimental results show that the average roughness height Ra is 1.97 μm and root-mean-square roughness height Rq is 2.44 μm, while the correlation lengths of the secondary and tertiary undulations are round 100 μm and 20 μm, respectively. The numerical results indicate that the contact gap height and fluid pressure gradient are two critical parameters which significantly affect the gap permeability. As the contact gap closes, there is a decrease in gap permeability, and most importantly, the gap permeability is also very sensitive to the fluid pressure gradient. Furthermore, with gap closure, the permeability of the contact gap gradually approaches that of the cartilage tissue, at which point the contact gap is functional closed. This occurs at a contact gap height around 1 μm and fluid pressure gradient below 5 × 105 Pa/m in this study.
  • Item
    Thumbnail Image
    Predicting Knee Osteoarthritis
    Gardiner, B ; Woodhouse, F ; Besier, T ; Grodzinsky, A ; Lloyd, D ; Zhang, L ; Smith, D (Springer US, 2016)
    Treatment options for osteoarthritis (OA) beyond pain relief or total knee replacement are very limited. Because of this, attention has shifted to identifying which factors increase the risk of OA in vulnerable populations in order to be able to give recommendations to delay disease onset or to slow disease progression. The gold standard is then to use principles of risk management, first to provide subject-specific estimates of risk and then to find ways of reducing that risk. Population studies of OA risk based on statistical associations do not provide such individually tailored information. Here we argue that mechanistic models of cartilage tissue maintenance and damage coupled to statistical models incorporating model uncertainty, united within the framework of structural reliability analysis, provide an avenue for bridging the disciplines of epidemiology, cell biology, genetics and biomechanics. Such models promise subject-specific OA risk assessment and personalized strategies for mitigating or even avoiding OA. We illustrate the proposed approach with a simple model of cartilage extracellular matrix synthesis and loss regulated by daily physical activity.
  • Item
    Thumbnail Image
    A mathematical model for targeting chemicals to tissues by exploiting complex degradation
    Gardiner, BS ; Zhang, L ; Smith, DW ; Pivonka, P ; Grodzinsky, AJ (BIOMED CENTRAL LTD, 2011-09-22)
    BACKGROUND: In many biological and therapeutic contexts, it is highly desirable to target a chemical specifically to a particular tissue where it exerts its biological effect. In this paper, we present a simple, generic, mathematical model that elucidates a general method for targeting a chemical to particular tissues. The model consists of coupled reaction-diffusion equations to describe the evolution within the tissue of the concentrations of three chemical species: a (concentration of free chemical), b (binding protein) and their complex, c (chemical bound to binding protein). We assume that all species are free to diffuse, and that a and b undergo a reversible reaction to form c. In addition, the complex, c, can be broken down by a process (e.g. an enzyme in the tissue) that results in the release of the chemical, a, which is then free to exert its biological action. RESULTS: For simplicity, we consider a one-dimensional geometry. In the special case where the rate of complex formation is small (compared to the diffusion timescale of the species within the tissue) the system can be solved analytically. This analytic solution allows us to show how the concentration of free chemical, a, in the tissue can be increased over the concentration of free chemical at the tissue boundary. We show that, under certain conditions, the maximum concentration of a can occur at the centre of the tissue, and give an upper bound on this maximum level. Numerical simulations are then used to determine how the behaviour of the system changes when the assumption of negligible complex formation rate is relaxed. CONCLUSIONS: We have shown, using our mathematical model, how complex degradation can potentially be exploited to target a chemical to a particular tissue, and how the level of the active chemical depends on factors such as the diffusion coefficients and degradation/production rates of each species. The biological significance of these results in terms of potential applications in cartilage tissue engineering and chemotherapy is discussed. In particular, we believe these results may be of use in determining the most promising prodrug candidates.