Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 36
  • Item
    Thumbnail Image
    Internet of Things for Structural Health Monitoring
    SRIDHARA RAO, A ; Gubbi, J ; Ngo, T ; Mendis, P ; Palaniswami, M ; Epaarachchi, A ; Chanaka Kahandawa, G (CRC Press, 2016-05)
    The Internet revolution led to the interconnection between people at an unprecedented scale and pace. The ability of the sensor networks to send data over the Internet further enhanced the scope and usage of the sensor networks. The Internet uses unique address to identify the devices connected to the network. Structural Health Monitoring (SHM) implies monitoring of the state of the structures through sensor networks in an online mode and are pertinent to aircraft and buildings. SHM can be further divided into two categories: global health monitoring and local health monitoring. Continuous online SHM would be an ideal solution. SHM is performed by using acoustic sensors, ultrasonic sensors, strain gauges, optical fibers, and so on. Video cameras can also be used for SHM. SHM can be achieved in real-time and rich analytics. With the advent of smart sensors—sensors with programmable microprocessors, memory, and processing—has reduced load of central data processing, communication overhead while proving continuous SHM status.
  • Item
    Thumbnail Image
    Experimental and numerical investigations on the thermal response of multilayer glass fibre/unsaturated polyester/organoclay composite
    Nguyen, QT ; Ngo, TD ; Bai, Y ; Phuong, T (WILEY-BLACKWELL, 2016-12)
    SUMMARY Organoclay glass fibre reinforced polymer (GFRP) nanocomposites are fabricated using the vacuum assisted resin transfer moulding. The unsaturated polyester resin is prepared with and without organoclay involving mechanical mixing, sonication, dilution solvent and heat treatment. Three levels of organophilic clay content are added, and its influences on the fire performance of composite samples are investigated. A novel numerical procedure combining pyrolysis analysis of the organoclay‐composites and the fire dynamic simulation of the combustion process are developed to validate the thermal responses obtained from the cone calorimetry experiments. Kinetic parameters obtained from the TGA tests and pyrolysis analyses are used as inputs for the models measuring the fire growth index and total heat release. To account for multilayer composite structure and organoclay distribution, three numerical models are proposed including composite (CPS), component (CPN) and CPN‐layer models. While CPS model assumes the homogeneity of the composite, later models consider multilayer effects with uniform (CPN model) or concentrated (CPN‐layer model) distribution of organoclay. Numerical results are compared with experimental ones in terms of total heat release, fire growth index. Finally, the fire resistance and total smoke release of the polyester/glass composites with the addition of organoclay will be evaluated taking into account influences of the fabrication processes.
  • Item
    No Preview Available
    High strength/density ratio in a syntactic foam made from one-part mix geopolymer and cenospheres
    Hajimohammadi, A ; Ngo, T ; Provis, JL ; Kim, T ; Vongsvivut, J (Elsevier Ltd, 2019-09-15)
    By designing a composite of one-part mix geopolymer and hollow cenospheres, a commercially viable and environmentally-friendly foam was synthesised with a high strength/density ratio. The composite is made of a dry mix powder of geopolymer source materials, sodium silicate alkali activator and cenospheres, which starts to react when mixed with water. As the geopolymer reacts and gains strength over time, the surface of the cenospheres takes part in the reaction and forms a strong bond with the binding matrix. Synchrotron-based Fourier transform infrared microspectroscopy revealed, for the first time, the chemical bonding interaction of the amorphous interfacial layer between the geopolymer and cenospheres. The resulting foam composite gained a strength of 17.5 MPa at a density of 978 kg/m3, which is noticeably higher than that of existing environmentally-friendly lightweight foams made under ambient conditions. The thermal conductivity of the foam was measured to be around 0.28 kW/mK, which is similar to that of foam concrete. This foam produced in this study is found to be lightweight, strong and possess a desirable insulating capacity, while the preparation process of the one-part mix composite is maintained simply by adding water and curing the mixture at an ambient temperature.
  • Item
    No Preview Available
    Vibration of cracked functionally graded microplates by the strain gradient theory and extended isogeometric analysis
    Nguyen, HX ; Atroshchenko, E ; Tuan, N ; Nguyen-Xuan, H ; Vo, TP (ELSEVIER SCI LTD, 2019-05-15)
  • Item
    No Preview Available
    A new simple shear deformation plate theory
    Huu-Tai, T ; Trung-Kien, N ; Vo, TP ; Tuan, N (ELSEVIER SCI LTD, 2017-07-01)
  • Item
    Thumbnail Image
    Reconstructed Phase Space-Based Damage Detection Using a Single Sensor for Beam-Like Structure Subjected to a Moving Mass
    Nie, Z ; Ngo, T ; Ma, H (HINDAWI LTD, 2017)
    This paper presents a novel damage detection method based on the reconstructed phase space of vibration signals using a single sensor. In this approach, a moving mass is applied as excitation source, and the structure vibration responses at different positions are measured using a single sensor. A Moving Filter Function (MFF) is also presented to be used to separate and filter the responses before phase space reconstruction. Using the determined time delay and embedding dimensions, the responses are translated from time domain into the spatial domain. The index CPST (changes of phase space topology) values are calculated from the reconstructed phase space and used to identify structural damage. To demonstrate the method, six analysis scenarios for a beam-like structure considering the moving mass magnitude, damage location, the single sensor location, moving mass velocity, multiple types of damage, and the responses contaminated with noise are calculated. The acceleration and displacement responses are both used to identify the damage. The results indicate that the proposed method using displacement response is more sensitive to damage than that of acceleration responses. The results also proved that the proposed method can use a single sensor installed at different location of the beam to locate the damage/much damage reliably, even though the responses are contaminated with noise.
  • Item
    Thumbnail Image
    Deep neural network with high-order neuron for the prediction of foamed concrete strength
    Tuan, N ; Kashani, A ; Tuan, N ; Bordas, S (WILEY, 2019-04)
    Abstract The article presents a deep neural network model for the prediction of the compressive strength of foamed concrete. A new, high‐order neuron was developed for the deep neural network model to improve the performance of the model. Moreover, the cross‐entropy cost function and rectified linear unit activation function were employed to enhance the performance of the model. The present model was then applied to predict the compressive strength of foamed concrete through a given data set, and the obtained results were compared with other machine learning methods including conventional artificial neural network (C‐ANN) and second‐order artificial neural network (SO‐ANN). To further validate the proposed model, a new data set from the laboratory and a given data set of high‐performance concrete were used to obtain a higher degree of confidence in the prediction. It is shown that the proposed model obtained a better prediction, compared to other methods. In contrast to C‐ANN and SO‐ANN, the proposed model can genuinely improve its performance when training a deep neural network model with multiple hidden layers. A sensitivity analysis was conducted to investigate the effects of the input variables on the compressive strength. The results indicated that the compressive strength of foamed concrete is greatly affected by density, followed by the water‐to‐cement and sand‐to‐cement ratios. By providing a reliable prediction tool, the proposed model can aid researchers and engineers in mixture design optimization of foamed concrete.
  • Item
    Thumbnail Image
    Effect of Nanoclay on Thermomechanical Properties of Epoxy/Glass Fibre Composites
    Ngo, TD ; Nguyen, QT ; Nguyen, TP ; Tran, P (SPRINGER HEIDELBERG, 2016-04)
  • Item
    Thumbnail Image
    Generation of Recombinant Polioviruses Harboring RNA Affinity Tags in the 5' and 3' Noncoding Regions of Genomic RNAs.
    Flather, D ; Cathcart, AL ; Cruz, C ; Baggs, E ; Ngo, T ; Gershon, PD ; Semler, BL (MDPI AG, 2016-02-04)
    Despite being intensely studied for more than 50 years, a complete understanding of the enterovirus replication cycle remains elusive. Specifically, only a handful of cellular proteins have been shown to be involved in the RNA replication cycle of these viruses. In an effort to isolate and identify additional cellular proteins that function in enteroviral RNA replication, we have generated multiple recombinant polioviruses containing RNA affinity tags within the 3' or 5' noncoding region of the genome. These recombinant viruses retained RNA affinity sequences within the genome while remaining viable and infectious over multiple passages in cell culture. Further characterization of these viruses demonstrated that viral protein production and growth kinetics were unchanged or only slightly altered relative to wild type poliovirus. However, attempts to isolate these genetically-tagged viral genomes from infected cells have been hindered by high levels of co-purification of nonspecific proteins and the limited matrix-binding efficiency of RNA affinity sequences. Regardless, these recombinant viruses represent a step toward more thorough characterization of enterovirus ribonucleoprotein complexes involved in RNA replication.
  • Item
    Thumbnail Image
    Migration of breast cancer cell lines in response to pulmonary laminin 332.
    Carpenter, PM ; Sivadas, P ; Hua, SS ; Xiao, C ; Gutierrez, AB ; Ngo, T ; Gershon, PD (Wiley, 2017-01)
    Because tumor cell motility is a requirement for metastasis, we hypothesized that lung tissue harbors substances that induce tumor cell migration. MCF-7 breast carcinoma cells exposed to small airway epithelial cells and conditioned medium exhibited dose-dependent tumor cell migration. Among the extracellular matrix proteins in the conditioned medium identified by mass spectrometry, laminin 332 (LM332) had the greatest contribution to the migration of MCF-7 cells. Immunoblotting and immunohistochemistry for LM332-specific chains identified LM332 in the lung and in pulmonary epithelial cells. Antibodies to either LM332 or its integrin receptor inhibited MCF-7 motility, and knockdown of LM332 chains also reduced its migration-inducing activity. Taken together, these findings implicate LM332 as a component of lung tissue that can induce motility in breast carcinoma cells that have been transported to lung during metastasis. Earlier studies on LM332 in tumor progression have examined LM332 expression in tumor cells. This investigation, in comparison, provides evidence that the tumor promoting potential of LM332 may originate in the lung microenvironment rather than in tumor cells alone. Furthermore, this study provides evidence that the motility-inducing properties of the microenvironment can reside in epithelial cells. The findings raise the possibility that LM332 plays a role in the pulmonary metastases of breast carcinoma and may provide a target for antimetastasis therapy.