Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 23
  • Item
    Thumbnail Image
    Application of Artificial Neural Networks for Virtual Energy Assessment
    Mortazavigazar, A ; Wahba, N ; Newsham, P ; Triharta, M ; Zheng, P ; Chen, T ; Rismanchi, B (MDPI, 2021-12)
    A Virtual energy assessment (VEA) refers to the assessment of the energy flow in a building without physical data collection. It has been occasionally conducted before the COVID-19 pandemic to residential and commercial buildings. However, there is no established framework method for conducting this type of energy assessment. The COVID-19 pandemic has catalysed the implementation of remote energy assessments and remote facility management. In this paper, a novel framework for VEA is developed and tested on case study buildings at the University of Melbourne. The proposed method is a hybrid of top-down and bottom-up approaches: gathering the general information of the building and the historical data, in addition to investigating and modelling the electrical consumption with artificial neural network (ANN) with a projection of the future consumption. Through sensitivity analysis, the outdoor temperature was found to be the most sensitive (influential) parameter to electrical consumption. The lockdown of the buildings provided invaluable opportunities to assess electrical baseload with zero occupancies and usage of the building. Furthermore, comparison of the baseload with the consumption projection through ANN modelling accurately quantifies the energy consumption attributed to occupation and operational use, referred to as ‘operational energy’ in this paper. Differentiation and quantification of the baseload and operational energy may aid in energy conservation measures that specifically target to minimise these two distinct energy consumptions.
  • Item
    No Preview Available
    A multi-layered energy resilience framework and metrics for energy master planning of communities: A university campus case study
    Charani Shandiz, S ; Rismanchi, B ; Foliente, G ; Aye, L (Society of Risk Analysis, 2021-12-05)
  • Item
    No Preview Available
  • Item
    Thumbnail Image
    Lessons Learned from PCM Embedded Radiant Chilled Ceiling Experiments in Melbourne
    Mousavi, S ; Rismanchi, B ; Brey, S ; Aye, L (Instituto Superior de Engenharia do Porto, 2021-09-14)
    Buildings are responsible for over a third of energy consumption worldwide, particularly for the increasing demand of air-conditioners in response to the more extreme heat around the globe. It is imperative to move towards more energy-efficient space cooling alternatives. The integration of phase change material (PCM) with a radiant chilled ceiling (RCC) is a promising technology due to its benefits regarding energy efficiency and indoor environmental quality. This article presents a field study conducted on a newly-developed PCM embedded radiant chilled ceiling (PCM-RCC) installed in a stand-alone cabin located in Melbourne. The study evaluates the thermal and energy performance of the system through investigation of the transient thermal behaviour of PCM panels in charging-discharging cycles, the indoor comfort conditions, and the electricity peak demand. It was observed that the proposed PCM-RCC can provide satisfactory comfort conditions and contribute to load shifting if a refined operating strategy is applied. The efficiency of PCM recharge overnight depends on several factors that need to be carefully considered in design. The challenges related to the implementation of optimal operating dynamic schedules in response to the thermal behaviour of PCM-RCC, and accurate weather forecasting should be addressed to realise the full potential of this technology.
  • Item
    Thumbnail Image
    Daily and seasonal thermal energy storage for enhanced flexible operation of low-temperature heating and cooling network
    Vecchi, A ; Rismanchi, B ; Mancarella, P ; Sciacovelli, A (Ecos 2021 ‎, 2021)
    Synergic operation of electricity, heating and cooling networks can bring savings and low carbon footprint through energy efficiency. In such context, the present work proposes a novel Smart Thermal Loop (STL) solution: a fully electrified thermal generation and distribution system where a low-temperature underground loop and reversible heat pumps are used to supply users’ heating and cooling demand. Additionally, STL includes short and long-term thermal energy storage (TES) by means of sensible storage tanks and geothermal boreholes. The proposed solution is described and investigated in the case of the new campus of the University of Melbourne (with aggregated peak load of about 2 and 3 MWth, respectively, for heating and cooling). A numerical model is proposed to simulate the yearly operation of STL with 1-hour resolution. Key features include (i) network model for the underground loop to track temperature evolution over space and time, (ii) variable heat pump performance, which depends on network temperatures, (iii) physical model for the heat transfer between system and soil, in the geothermal storage, (iv) modelling of the interaction between neighbouring boreholes. Results explore the dynamics of the integrated STL system, with a focus on the role that energy storage over different timescales plays in enabling efficient and flexible operation of system components. TES contribution to system operation goes beyond the use of low-price electricity and allows energy savings through efficient scheduling of heat pumps operation and reduction of pumping work. Benefits from the flexible operation of STL are quantified as a 10% reduction in energy expenditure and 28% in system running costs. The presented model can also instruct on the impact of different design choices on STL operation.
  • Item
    No Preview Available
    Dataset on validation of double U-tube borehole and seasonal solar thermal energy storage system TRNSYS models
    Shah, SK ; Aye, L ; Rismanchi, B ( 2021-08-09)
    This dataset includes data from the validation of double U-tube borehole and seasonal solar thermal energy storage system TRNSYS models. The simulated transient temperatures at various points of the systems were compared with the measured ones. To quantify the agreement between each simulated and measured temperature of interest, mean bias error (MBE), root mean square error (RMSE) and correlation coefficient (CC) were applied.
  • Item
    No Preview Available
    Pandemic products and volatile chemical emissions
    Steinemann, A ; Nematollahi, N ; Rismanchi, B ; Goodman, N ; Kolev, SD (Springer, 2021-01)
    The recent pandemic (COVID-19) has seen a sweeping and surging use of products intended to clean and disinfect, such as air sprays, hand sanitizers, and surface cleaners, many of which contain fragrance. However, exposure to fragranced cleaning products has been associated with adverse effects on human health. Products can emit a range of volatile chemicals, including some classified as hazardous, but relatively few ingredients are disclosed to the public. Thus, relatively little is known about the specific emissions from these products. This study investigates the volatile organic compounds (VOCs) emitted from “pandemic products” that are being used frequently and extensively in society. In addition, among these emissions, this study identifies potentially hazardous compounds, compares so-called green and regular versions of products, and examines whether ingredients are disclosed to the public. Using gas chromatography/mass spectrometry, 26 commonly used pandemic products, including 13 regular and 13 so-called green versions, were analyzed for their volatile emissions. Product types included hand sanitizers, air disinfectants, multipurpose cleaners, and handwashing soap. All products were fragranced. The analyses found the products collectively emitted 399 VOCs with 127 VOCs classified as potentially hazardous. All products emitted potentially hazardous compounds. Comparing regular products and green products, no significant difference was found in the emissions of the most prevalent compounds. Further, among the 399 compounds emitted, only 4% of all VOCs and 11% of potentially hazardous VOCs were disclosed on any product label or safety data sheet. This study reveals that pandemic products can generate volatile emissions that could pose risks to health, that could be unrecognized, and that could be reduced, such as by using fragrance-free versions of products.
  • Item
    Thumbnail Image
    Alternative Heating and Cooling Systems for the Retrofit of Medium-Rise Residential Buildings in Greece
    Panagiotidou, M ; Aye, L ; Rismanchi, B (WILEY-V C H VERLAG GMBH, 2021-11)
    The European Union recently set the target of doubling building retrofit rates through the European Green Deal. Currently, more than half of the households’ energy consumption is accounted for space conditioning, with southern European countries experiencing increasing demand for cooling systems over the past decade. Herein, the performance of market‐available heating and cooling systems that can replace the existing low‐efficiency systems in multiresidential buildings in Greece is compared. The study's objectives are to minimize the operating greenhouse gas emissions and the life‐cycle cost. Results demonstrate that air‐to‐air heat pumps have the lowest life‐cycle cost. In areas where natural gas is not available, the replacement of the diesel‐oil boiler with a biomass boiler leads to a 48% to 73% decrease of the operating greenhouse gas emissions. In areas where natural gas is available, the gas absorption heat pump has the lowest operating greenhouse gas emissions, demonstrating a reduction between 40% and 54% when compared to a conventional gas boiler; however, it dramatically increases the life‐cycle cost, making it less attractive than heat pumps and condensing gas boilers. The findings are in line with the current residential space conditioning market, while indicating the potential of biomass boilers and gas absorption heat pumps.
  • Item
    Thumbnail Image
    Utilizing a Building Information Modelling Environment to Communicate the Legal Ownership of Internet of Things-Generated Data in Multi-Owned Buildings
    Atazadeh, B ; Olfat, H ; Rismanchi, B ; Shojaei, D ; Rajabifard, A (Multidisciplinary Digital Publishing Institute ( M D P I AG), 2019-11-01)
    In multi-owned buildings, a community of residents live in their private properties while they use and share communal spaces and facilities. Proper management of multi-owned buildings is underpinned by rules related to health, safety, and security of the residents and visitors. Utilizing Internet of Things (IoT) devices to collect information about the livable space has become a significant trend since the introduction of first smart home appliances back in 2000. The question about who owns the IoT generated data and under what terms it can be shared with others is still unclear. IoT devices, such as security camera and occupancy sensors, can provide safety for their owners, while these devices may capture private data from the neighborhood. In fact, the residents are sometimes not aware of regulations that can prevent them from installing and collecting data from shared spaces that could breach other individuals’ privacy. On the other hand, Building Information Modelling (BIM) provides a rich 3D digital data environment to manage the physical, functional, and ownership aspects of buildings over their entire lifecycle. This study aims to propose a methodology to utilize BIM for defining the legal ownership of the IoT generated data. A case study has been used to discuss key challenges related to the ownership of IoT data in a multi-owned building. This study confirmed that BIM environment can facilitate the understanding of legal ownership of IoT datasets and supports the interpretation of who has the entitlement to use the IoT datasets in multi-owned buildings
  • Item
    Thumbnail Image
    Numerical simulation of single-sided natural ventilation: ‎Impacts of balconies opening and depth scale on indoor ‎environment ‎
    Izadyar, N ; Miller, W ; Rismanchi, B ; Garcia-Hansen, V (IOP Conference Series: Earth and Environmental Science (EES), 2019)
    Heating Ventilation and Air Conditioning (HVAC), including, Mechanical ventilation (MV) in the building sector accounts for around 40% of electricity consumption and a large percentage of Greenhouse Gas (GHG) emissions. Natural ventilation (NV), as an alternative method, assist in decreasing energy consumption as well as harmful emissions. Balconies, a common architectural element in high rise residential buildings, could enhance NV and reduce reliance on mechanical ventilation in cooling dominant climates. Indoor air velocity (IAV) and distribution due to NV is less predictable than MV, and the impacts of balcony geometry on IAV and distribution profile have not yet been classified. This study, focusing on single-sided ventilation apartments, seeks to determine to what extent balcony depth and door opening area impacts on the indoor environment of the attached living area. For this, 3D – steady-state Computational Fluid Dynamics (CFD) simulations were conducted using ANSYS Fluent. The simulation results were validated against measured data in a full-scale experimental study in a residential building in subtropical Brisbane, Australia. Five different openings and nine depth scenarios were modelled, with results showing variances in indoor mean air velocity and temperature. The outcomes suggest that further research on the indoor distribution of temperature and air velocity may provide further clarity on the impact of balcony geometry on occupant comfort through NV.