Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    No Preview Available
    Upcycling opportunities and potential markets for aluminium composite panels with polyethylene core (ACP-PE) cladding materials in Australia: A review
    Pilipenets, O ; Gunawardena, T ; Hui, FKP ; Nguyen, K ; Mendis, P ; Aye, L (ELSEVIER SCI LTD, 2022-11-28)
    Many buildings worldwide have high fire-risk materials as part of their cladding. As governments in Australia strive to make buildings safer, it is expected that a large volume of end-of-life dangerous cladding will be replaced with safer materials. This high volume of hazardous materials might be upcycled into value-added products. This article presents a systematic market analysis and literature review in identifying current and potential uses for the raw materials used in hazardous ACP-PE cladding. The most promising areas were identified to be non-food-contact packaging (US$228 M p.a.), non-pressure pipes (US$30 M p.a.), footwear (US$5.29 M p.a.) and 3D printer filament (US$2.73 M p.a.)
  • Item
    No Preview Available
    Effects of learning curve models on onshore wind and solar PV cost developments in the USA
    Castrejon-Campos, O ; Aye, L ; Hui, FKP (PERGAMON-ELSEVIER SCIENCE LTD, 2022-05)
    Technological innovation planning for developing and deploying clean energy technologies plays a key role in reducing greenhouse gas emissions and transition to a low-carbon future. Learning curve theory has been adopted as a common framework for exploring the relationship between endogenous technological learning and technology cost developments. The aim of this article is to analyse the effects of selecting different learning curve approaches (i.e. model formulations) to describe energy technology cost changes over time. Experience and knowledge stock are chosen as the sources of learning to be considered. A new definition of experience was developed to account for the interaction between global and local experience. The new definition of experience also accounts for learning sub-processes (i.e. learning-by-doing, learning-by-using, and experience spillovers) to estimate total experience gained through technology deployment. An integrative model is developed for estimating the effects of learning-by-deploying and learning-by-researching on cost developments for onshore wind and solar PV in the USA. Publicly available data from government departments and organisations were utilised. It was found that technology cost developments are better explained when: (1) experience is defined as a function of global and local experience; (2) knowledge stock is also considered in the model formulation; and (3) technological processes affect only a fraction of the total capital cost. The findings suggested that the application of learning rates for model-based energy planning is context-dependent and how technological factors are explicitly defined may have significantly different policy implications (i.e. different technology costs predictions based on alternative model formulations).
  • Item
    Thumbnail Image
    Lean Practices Using Building Information Modeling (BIM) and Digital Twinning for Sustainable Construction
    Sepasgozar, SME ; Hui, FKP ; Shirowzhan, S ; Foroozanfar, M ; Yang, L ; Aye, L (MDPI, 2021-01)
    There is a need to apply lean approaches in construction projects. Both BIM and IoT are increasingly being used in the construction industry. However, using BIM in conjunction with IoT for sustainability purposes has not received enough attention in construction. In particular, the capability created from the combination of both technologies has not been exploited. There is a growing consensus that the future of construction operation tends to be smart and intelligent, which would be possible by a combination of both information systems and sensors. This investigation aims to find out the recent efforts of utilizing BIM for lean purposes in the last decade by critically reviewing the published literature and identifying dominant clusters of research topics. More specifically, the investigation is further developed by identifying the gaps in the literature to utilize IoT in conjunction with BIM in construction projects to facilitate applying lean techniques in a more efficient way in construction projects. A systematic review method was designed to identify scholarly papers covering both concepts “lean” and “BIM” in construction and possibilities of using IoT. A total of 48 scholarly articles selected from 26 construction journals were carefully reviewed thorough perusal. The key findings were discussed with industry practitioners. The transcriptions were analyzed employing two coding and cluster analysis techniques. The results of the cluster analysis show two main directions, including the recent practice of lean and BIM interactions and issues of lean and BIM adoption. Findings revealed a large synergy between lean and BIM in control interactions and reduction in variations, and surprisingly there are many uncovered areas in this field. The results also show that the capability of IoT is also largely not considered in recent developments. The number of papers covering both lean and BIM is very limited, and there is a large clear gap in understanding synergetic interactions of lean concepts applying in BIM and IoT in specific fields of construction such as sustainable infrastructure projects.
  • Item
    Thumbnail Image
    A Systematic Content Review of Artificial Intelligence and the Internet of Things Applications in Smart Home
    Sepasgozar, S ; Karimi, R ; Farahzadi, L ; Moezzi, F ; Shirowzhan, S ; M. Ebrahimzadeh, S ; Hui, F ; Aye, L (MDPI AG, 2020-04-28)
    This article reviewed the state-of-the-art applications of the Internet of things (IoT) technology applied in homes for making them smart, automated, and digitalized in many respects. The literature presented various applications, systems, or methods and reported the results of using IoT, artificial intelligence (AI), and geographic information system (GIS) at homes. Because the technology has been advancing and users are experiencing IoT boom for smart built environment applications, especially smart homes and smart energy systems, it is necessary to identify the gaps, relation between current methods, and provide a coherent instruction of the whole process of designing smart homes. This article reviewed relevant papers within databases, such as Scopus, including journal papers published in between 2010 and 2019. These papers were then analyzed in terms of bibliography and content to identify more related systems, practices, and contributors. A designed systematic review method was used to identify and select the relevant papers, which were then reviewed for their content by means of coding. The presented systematic critical review focuses on systems developed and technologies used for smart homes. The main question is ”What has been learned from a decade trailing smart system developments in different fields?”. We found that there is a considerable gap in the integration of AI and IoT and the use of geospatial data in smart home development. It was also found that there is a large gap in the literature in terms of limited integrated systems for energy efficiency and aged care system development. This article would enable researchers and professionals to fully understand those gaps in IoT-based environments and suggest ways to fill the gaps while designing smart homes where users have a higher level of thermal comfort while saving energy and greenhouse gas emissions. This article also raised new challenging questions on how IoT and existing developed systems could be improved and be further developed to address other issues of energy saving, which can steer the research direction to full smart systems. This would significantly help to design fully automated assistive systems to improve quality of life and decrease energy consumption.
  • Item
    Thumbnail Image
    Engaging employees with good sustainability: Key performance indicators for dry ports
    Hui, FKP ; Aye, L ; Duffield, CF (MDPI AG, 2019-05-24)
    Dry ports have the potential to enhance the sustainability of transport systems, yet their introduction requires major changes to the current logistics chain. Further, emphasising sustainability goals and continued employee engagement can be a challenge when developing or implementing organisational change management programs in dry ports. Key considerations include governmental requirements and compliance, investor expectations, as well as employee engagement; these factors may be conflicting. The top-down management approach supported by strong leadership, participative approaches and constant communication assists in achieving successful change management. Sound selection of key performance indicators (KPIs) provides a set of metrics to track and aid the change process. They serve as a unifying link between top managements’ sustainability goals and employees’ engagement. The initial findings of our research confirm that both port and terminal operators have a gap in their understanding of the importance of sustainability goals and environmental goals. This will have a flow-on effect of port and terminal operators not driving the right messages to their staff in their organisational change management programs. Based on a critical literature review, it has been established what might qualify as good sustainability KPIs for dry ports. An example of a dry port at the Port of Somerton has been included. As every dry port has different requirements and constraints, it is important to develop KPIs together with stakeholders.
  • Item
    Thumbnail Image
    Occupational stress and workplace design
    Hui, K ; Aye, L (MDPI AG, 2018-09-23)
    The World Green Building Council (WGBC) advocates improvements in employee health, wellbeing, and productivity in buildings as people are about 90% of an organisation’s expense and well exceed building costs and energy costs. It was reported that earlier research on workplace design primarily focused on physical arrangement of employees’ immediate work area, and ambient environmental qualities of the work area. Building organisation, exterior amenities, and site-planning have been given less attention. Therefore, we examine more closely the health relevance of both proximal and remote aspects of workplace design. Occupational stress is a complex phenomenon that is dynamic and evolving over time. This investigation reviews the existing fundamental conceptual models of occupational stress, workplace design, and connection to nature. It aims to develop an improved model relevant to work place design and occupational stress linked with connection to nature. The proposed improved model is presented with an appropriate causal loop diagram to assist in visualizing how different variables in a system are interrelated. The developed model highlights how connection to nature in workspaces can function as a work resource with a dual effect of improving physical wellbeing and psychological wellbeing.