Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    No Preview Available
    A multi-layered energy resilience framework and metrics for energy master planning of communities: A university campus case study
    Charani Shandiz, S ; Rismanchi, B ; Foliente, G ; Aye, L (Society of Risk Analysis, 2021-12-05)
  • Item
    No Preview Available
  • Item
    Thumbnail Image
    Lessons Learned from PCM Embedded Radiant Chilled Ceiling Experiments in Melbourne
    Mousavi, S ; Rismanchi, B ; Brey, S ; Aye, L (Instituto Superior de Engenharia do Porto, 2021-09-14)
    Buildings are responsible for over a third of energy consumption worldwide, particularly for the increasing demand of air-conditioners in response to the more extreme heat around the globe. It is imperative to move towards more energy-efficient space cooling alternatives. The integration of phase change material (PCM) with a radiant chilled ceiling (RCC) is a promising technology due to its benefits regarding energy efficiency and indoor environmental quality. This article presents a field study conducted on a newly-developed PCM embedded radiant chilled ceiling (PCM-RCC) installed in a stand-alone cabin located in Melbourne. The study evaluates the thermal and energy performance of the system through investigation of the transient thermal behaviour of PCM panels in charging-discharging cycles, the indoor comfort conditions, and the electricity peak demand. It was observed that the proposed PCM-RCC can provide satisfactory comfort conditions and contribute to load shifting if a refined operating strategy is applied. The efficiency of PCM recharge overnight depends on several factors that need to be carefully considered in design. The challenges related to the implementation of optimal operating dynamic schedules in response to the thermal behaviour of PCM-RCC, and accurate weather forecasting should be addressed to realise the full potential of this technology.
  • Item
    Thumbnail Image
    Lessons Learned from PCM Embedded Radiant Chilled Ceiling Experiments in Melbourne
    Mousavi, S ; Rismanchi, B ; Brey, S ; Aye, L (Elsevier, 2022-06)
    Buildings are responsible for over a third of energy consumption worldwide, particularly for the increasing demand of air-conditioners in response to the more extreme heat around the globe. It is imperative to move towards more energy-efficient space cooling alternatives. The integration of phase change material (PCM) with a radiant chilled ceiling (RCC) is a promising technology due to its benefits regarding energy efficiency and indoor environmental quality. This article presents a field study conducted on a newly-developed PCM embedded radiant chilled ceiling (PCM-RCC) installed in a stand-alone cabin located in Melbourne. The study evaluates the thermal and energy performance of the system through investigation of the transient thermal behaviour of PCM panels in charging-discharging cycles, the indoor comfort conditions, and the electricity peak demand. It was observed that the proposed PCM-RCC can provide satisfactory comfort conditions and contribute to load shifting if a refined operating strategy is applied. The efficiency of PCM recharge overnight depends on several factors that need to be carefully considered in design. The challenges related to the implementation of optimal operating dynamic schedules in response to the thermal behaviour of PCM-RCC, and accurate weather forecasting should be addressed to realise the full potential of this technology.
  • Item
    No Preview Available
    Dataset on validation of double U-tube borehole and seasonal solar thermal energy storage system TRNSYS models
    Shah, SK ; Aye, L ; Rismanchi, B ( 2021-08-09)
    This dataset includes data from the validation of double U-tube borehole and seasonal solar thermal energy storage system TRNSYS models. The simulated transient temperatures at various points of the systems were compared with the measured ones. To quantify the agreement between each simulated and measured temperature of interest, mean bias error (MBE), root mean square error (RMSE) and correlation coefficient (CC) were applied.
  • Item
    Thumbnail Image
    Alternative Heating and Cooling Systems for the Retrofit of Medium-Rise Residential Buildings in Greece
    Panagiotidou, M ; Aye, L ; Rismanchi, B (WILEY-V C H VERLAG GMBH, 2021-11)
    The European Union recently set the target of doubling building retrofit rates through the European Green Deal. Currently, more than half of the households’ energy consumption is accounted for space conditioning, with southern European countries experiencing increasing demand for cooling systems over the past decade. Herein, the performance of market‐available heating and cooling systems that can replace the existing low‐efficiency systems in multiresidential buildings in Greece is compared. The study's objectives are to minimize the operating greenhouse gas emissions and the life‐cycle cost. Results demonstrate that air‐to‐air heat pumps have the lowest life‐cycle cost. In areas where natural gas is not available, the replacement of the diesel‐oil boiler with a biomass boiler leads to a 48% to 73% decrease of the operating greenhouse gas emissions. In areas where natural gas is available, the gas absorption heat pump has the lowest operating greenhouse gas emissions, demonstrating a reduction between 40% and 54% when compared to a conventional gas boiler; however, it dramatically increases the life‐cycle cost, making it less attractive than heat pumps and condensing gas boilers. The findings are in line with the current residential space conditioning market, while indicating the potential of biomass boilers and gas absorption heat pumps.
  • Item
    Thumbnail Image
    Undisturbed ground temperature in Melbourne
    Shah, SK ; Aye, L ; Rismanchi, B ; Sadrul Islam, AKM ; Ruhul Amin, M ; Ali, M (AIP Publishing, 2019-07-18)
    The ground surface temperature changes with the diurnal cycle of solar radiation and ambient air temperature. However, the amplitude of the ground temperature variation diminishes with the increase of the depth of the ground and after a certain depth of the ground, it becomes almost constant, where is termed "undisturbed ground temperature (UGT)". At this depth, the seasonal changes of solar radiation and ambient air temperature changes will no longer affect onground temperature. It is one of the important parameters for designing of the ground heat exchangers and building energy analyses. In this study ground temperatures at various depths in Melbourne were investigated using a 40 m deep borehole instrumented with thermistors. The ground temperatures at various depths (0 m to 40 m) in Melbourne were also simulated by using three methods: Kasuda formula method, simulation (TRNSYS, Type 77), and simplified correlation (developed by Ouzzane et al. in 2015) and the results were compared with the measured data. Root mean square error (RMSE) and mean bias error (MBE)were used to validate and verify the methods. It was found that the estimated ground temperatures at 2, 21, and 40 m depths by Kasuda formula method and simulation (TRNSYS)have the same trends as that of the measured data. The measured annual temperatures of ground at 2 m depth were between 14.7°C and 19.8°C, while the temperature at 21 m and 40 m depths remained almost constant. RMSE and MBE of the simulation (TRNSYS, Type 77) were found to be 1.39°C, and -1.39°C respectively compared to measured data at 21 m depth. Based on these values, we conclude that simulation (TRNSYS, Type 77) can reliably predict the ground temperature for the selected site in Melbourne.
  • Item
    Thumbnail Image
    Effective use of offsite manufacturing for public infrastructure projects in Australia
    Gunawardena, D ; Mendis, P ; Ngo, D ; Rismanchi, B ; Aye, L (ICE Publishing, 2019)
    Prefabrication and offsite manufacturing have featured in various forms in an in-situ based construction industry for many decades. Scarcity of both human and material resources is challenging the future of traditional construction practices. Due to its many benefits such as speed of project delivery, minimum work on site, minimised construction waste and higher quality assurance, offsite manufacturing is gradually evolving into an essential technology in the construction industry. As a result of re-cent government initiatives, Australia is seeing a considerable increase in the use of offsite manufacturing and prefabricated modular technologies in delivering public infrastructure projects such as schools, healthcare facilities, and public transport facilities. Such projects are ably supported by academic research collaborating with the industry to ensure that the outcomes keep improving to achieve the highest quality and functionality. This paper discusses how multidisciplinary research addresses issues such as structural performance, construction technology, design for manufacturing and assembly and indoor environ-mental quality for the delivery of such public infrastructure projects. These projects have set an example in how offsite manufacturing supported by academic research can be beneficial for effectively delivering the greater good to the society.
  • Item
    Thumbnail Image
    Optimisation of a seasonal thermal energy storage system for space heating in cold climate zones
    Shah, S ; Aye, L ; Rismanchi, B (AAEE - Institute for Sustainable Technologies (AEE INTEC), 2018-10-04)
    The parameter optimised for a seasonal thermal energy storage (STES) system based on life cycle cost (LCC) is a unique investigation. Although STES with ground coupled heat pump (GCHP) and solar collector system have been verified and validated in other countries, the result cannot be used for particular cold climates because the performance of the system is highly climate sensitive. Therefore, this study intends to fill the knowledge gap by identifying optimum sets of system variables for four selected cities in cold climate zones.
  • Item
    No Preview Available
    Seasonal solar energy storage system for space heating in cold climate
    Shah, SK ; Aye, L ; Rismanchi, B (Australian PV institute, 2017-12-05)
    A seasonal solar energy storage system for space heating in cold climates is proposed. The system includes evacuated tube solar collectors integrated with double U-tube vertical borehole thermal storage coupled with a heat pump. The performance of the system is evaluated by computer simulations for a cluster of typical houses in four Asia-pacific cities: Ulaanbaatar (Mongolia), Harbin (China), Dras (India) and Lukla (Nepal). TRNSYS, a transient systems simulation program, was used to simulate the system. The typical detached house model for each city was developed based on the type of dwelling. The initial sizes of the system components were determined for the four cities. The average ground temperatures and energy balance of the system during charging and discharging modes were investigated. The seasonal heating coefficient of performance of the system in each city has been presented. The simple payback period (SPBP) of the proposed system was investigated by comparing convention system. It was found that the proposed system has the potential for fulfilling the space heating demand in cold climate cities of Asia-Pacific region.