Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 410
  • Item
    Thumbnail Image
    Current Operational Battery Energy Storage Systems in Australia and Their Intended Project Objectives on Grid Operational Issues: A Literature Review
    Hui, KP ; Yap, L (IEOM Society International, 2024-02-12)
    As energy companies look to diversify their portfolio in renewable energy, the demand for electrification will continue to increase. There will be increasing demands on the electrical grid infrastructure. Distributed energy resources (DER) such as solar photovoltaic (PV) on rooftops and electric vehicles will experience a host of operational issues such as hosting capacities, overloads, reverse flow, phase balance, frequency drift and voltage variation. Battery energy storage systems can help mitigate some of these problems. In this paper, the literature and public available information on operational battery storage systems in Australia are reviewed and discussed. It is found that both small batteries and large batteries both fundamentally address grid operational issues. As Australia moves towards high DER penetration and high renewable energy generation, there will be a need for more battery energy storage systems to offset operational issues. The lack of private funding especially for smaller batteries may possibly cause PV DER to lag the overall demand for electrification.
  • Item
    Thumbnail Image
    Lightweight traffic anomaly detection: A case study with SCATS volume data of Melbourne
    Taheri Sarteshnizi, I ; Sarvi, M ; Asadi Bagloee, S ; Nassir, N ; Aye, Z (Australasian Transport Research Forum, 2023)
    In this paper, we evaluate performance of an anomaly detection framework with real traffic count data collected by SCATS (Sydney Coordinated Adaptive Traffic System) loop detectors in Melbourne. The goal is to detect anomalous daily volume profiles within temporally large historical traffic data utilizing a lightweight and parameter-free approach and use it for live applications. To achieve this, daily volume profiles are first compressed into two dimensions benefiting from the Principal Component analysis (PCA). Then, a parameter-free version of DBSCAN is applied to the data with unique days of the week. Results from more than 20 different locations in Melbourne are fully visualized and the advantages and disadvantages of the method are discussed. We found that, with this approach, anomalous volume profiles can be accurately detected in a wide range of spatiotemporal data without any pre-training, parameter setting, or using complex learning methods.
  • Item
    Thumbnail Image
    Testing request prioritization strategies to improve the quality of a shared autonomous vehicles service: A Melbourne case study
    Tiwari, S ; Nassir, N ; Sauri Lavieri, P (Australasian Transport Research Forum, 2023)
    Shared autonomous vehicles (SAVs) have the potential to revolutionize urban transport by offering a mobility service that combines the benefits of autonomous vehicles and ride-hailing systems. However, one of the main limitations of these services is the handling of all request types in a singular way, which can increase biases towards a fixed type of passengers who have different properties and accessibility-based constraints. This study proposes a prioritization approach based on different request properties and the urgency of the request. The study uses the MATSim simulator to evaluate the prioritization schemes and implements five different scenarios to assess the collective and individual effects of the schemes. The case study focuses on Melbourne Metropolitan Area, and the prioritization is done based on the existing public transport (PT) service and pre-calculated SAV demand of the network. The study considers different performance measures, such as service efficiency, externalities, and provision equity, to estimate the benefits of the prioritization. The results indicate that prioritization can improve overall equity by spreading wait times evenly across the network. The prioritization approach improves the service with more riders finding the service attractive, resulting in more served rides with lower average vehicle kilometers traveled per ride. In addition, the study shows that the PT mode share is increased in multiple scenarios, demonstrating the positive effect of considering accessibility when prioritizing requests.
  • Item
    Thumbnail Image
    What influences passenger’s arrival rate at stops in Melbourne: WASEA-LSTM: a novel deep learning model leveraging multi-source data fusion
    Rezazada, M ; Nassir, N ; Tanin, E (ATRF, 2023)
    Public transportation demand plays a crucial role in service planning and operation. Accurate prediction of passenger arrival rates at transit stops allows transportation planners and operators to optimize resources and improve service efficiency. Current methodologies primarily focus on weather's impact in the aviation industry, supply dynamics, and arrival time prediction, while overlooking its influence on public transport demand variation. This study addresses these gaps by designing a deep neural network model that can predict public transit demand, using large-scale datasets from multiple sources in Melbourne, Australia. We propose a novel deep learning architecture called Wasea-Lstm (Weather-Aware Smart Exponential Activation LSTM) that captures spatial, temporal, and external correlations for passenger arrival rate prediction at tram stops. The model is trained and tested on integrated datasets from automatic fare collection (AFC), automatic passenger count (APC), and weather data over a period of three months. Results show that the Wasea-Lstm model significantly outperforms benchmark models, including gradient boosting machine (GBMR) and multi-layer perceptron (MLP) regression by 15% and 6% in R2 metric, respectively. The feature importance ranking reveals that stop location, time of the day, temperature, and humidity are the key influencers of passenger arrival behaviour in Melbourne. Overall, this study contributes to the development of a model that accounts for multi-dimensional, high-resolution determinants of passenger demand using large-scale datasets from real world. The proposed Wasea-Lstm architecture shows exceptional performance in precisely forecasting stop-level demand for one of Melbourne's largest tram routes. Moreover, its applicability extends seamlessly to all routes within the network.
  • Item
    No Preview Available
    Monte Carlo and Subset Simulations-Based Reliability Analysis of Composite Frames Using OpenSees
    Tran, H ; Thai, HT ; Uy, B (Springer Nature Switzerland, 2023-01-01)
  • Item
    No Preview Available
    Numerical Study of a Novel Self-lock Connection for Modular Tall Buildings
    Thai, HT (Springer Nature Singapore, 2023-01-01)
  • Item
    No Preview Available
    ADVANCED ANALYSIS OF STEEL‐CONCRETE COMPOSITE BUILDINGS
    Tran, H ; Thai, HT ; Ngo, T ; Uy, B ; Li, D ; Mo, J (Wiley, 2023-02)
    Abstract This paper presents a nonlinear simulation method for composite framing systems constituted from concrete‐filled steel tubular columns (CFST) and composite beam systems. A force‐based fibre beam‐column element in OpenSees was adopted. This element was capable of accurately capturing the local buckling of steel and the confining effect of concrete using the modified stress‐strain relationships of the steel and concrete fibres. A source code for the connection element was also developed in OpenSees to capture the semi‐rigid behaviour of the beam‐to‐column connections of the composite buildings. Through the verification with numerous experiments, the model has shown its capability of accurately simulating composite frames with simplicity and less computational cost. An extensive parametric study was conducted to examine the effect of the bracing systems and the rigidity of the connections on the behaviour and instability of the whole composite buildings.
  • Item
    No Preview Available
    Innovative composite structural systems for modular tall buildings
    Thai, HT ; Knobloch, M ; Kuhlmann, U ; Kurz, W ; Schafer, M (https://www.compositeconstructionix.com/, 2021)
    Modular or offsite construction is believed to shape the future of the construction industry as it possesses significant benefits over traditional onsite construction methods. However, most of its application are limited to steel or concrete buildings. Although steel-concrete composite structural system has many merits over the steel and concrete systems, its application in modular buildings is very limited. This paper explores recent developments of composite systems for modular high-rise buildings. They include modular units for resisting vertical gravity loads and lateral structural systems for resisting horizontal forces from wind and earthquake loadings and progressive collapse due to accidental loads such as fire, explosions and impact. Various inter-module joining methods developed in the literature will also be reviewed. Finally, a case study of the most efficient connection is presented to explore its applicability to high-rise modular buildings.
  • Item
    Thumbnail Image
    Whole-life baseline carbon assessment of residential building stock – A Victorian case study
    Chan, M ; Foliente, G ; Seo, S ; Hui, K ; Aye, L (Australian Life Cycle Assessment Society (ALCAS), 2023-07-19)
    Assessing residential building decarbonisation opportunities requires a whole-life approach, given the increasing share of embodied carbon as housing becomes more energy efficient. Since most of the projected housing stock would consist of existing buildings, emissions from renovation should also be included in determining both embodied and operational carbon in the residential building sector. A bottom-up typology framework was developed to estimate carbon emissions for existing and new housing up to 2050, scalable from local government area (LGA) to state-level jurisdiction which allows for granularity in testing scenarios for the future. Housing typologies were developed for existing, new, and renovation housing stock based on census data. Operating carbon was obtained using building energy simulation while embodied carbon data was accounted from localised life cycle construction datasets. The state of Victoria along with its corresponding LGAs was used as a case study for said framework. Heating load comprised most of the operating energy demand for most typologies while external walls and floors contributed significant embodied carbon for new residential buildings, particularly for detached houses. For Victoria, detached houses built prior to 1991 contributed most of the operational carbon, however with high construction rates set for most LGAs, new housing may contribute more GHG emissions in 2050. Brick veneer housing yielded more embodied carbon from the external wall compared to timber homes while concrete slabs used in floors also incurred a large amount of embodied carbon for the residential building stock. Renovating existing housing has the potential to reduce operating energy demand while emitting less embodied carbon, thus policies on this should be considered in developing decarbonisation pathways. Using the bottom-up typology whole-life carbon framework offers granularity in analysing individual-level carbon impact which can be expanded to LGA and state level.
  • Item
    No Preview Available
    A ROADMAP TO A SHARED VISION FOR PLATFORMS: THE MOTIVATIONS AND ROLES OF STAKEHOLDERS IN THE TRANSFORMATION FROM PROJECTS TO PLATFORMS
    Hijazi, AA ; Kang, M ; Moehler, RC ; Maxwell, D (Budapest University of Technology and Economics, 2023)
    In recent years, 'platform' has emerged as a buzzword for business. Despite widespread usage, there remains ambiguity in its meaning. Strategically, platforms capitalize on the advantages of commonality and have been successfully applied across multiple industries to deliver mass-customized products, increasing customer choice while maintaining efficient and effective production methods. It is known that the early involvement of stakeholders enables the platform logic, however that requires redefining their roles and motivations in the platform ecosystem. This paper aims to envisage redefined roles for each stakeholder in the construction value chain to create a shared vision roadmap by understanding their motivations for moving towards a platform ecosystem and how their engagement model will be changed. Four enterprises in Australia, that represent key stakeholders of the construction value chain, were selected for knowledge elicitation through individual discussions. The perspective pitches for the primary stakeholders comprise developers, general and specialized contractors, designers and engineers, while the rest of the value chain is grouped under associated stakeholders. In an attempt to define the new roles for the different stakeholders of the platform ecosystem, there emerged a shared vision that might enable a shift towards the platform approach. The intent for moving value-adding products and services upstream, expanding contribution to the value chain, continuous improvement through data-driven insights, seamless collaboration in a partnering environment and early prototyping were shared across stakeholder groups. A changed nature of engagement was observed where the general contractor ceased to be the single point of engagement with the associated supply chain actors; this role was most likely to be taken up by the developer or the platform consultant. For a longer study, the value chain actors in terms of financiers (upstream) and asset managers (downstream) are required to be included in the value chain and their motivations and roles explored.