Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 134
  • Item
    Thumbnail Image
    Energy Efficient Time Synchronization in WSN for Critical Infrastructure Monitoring
    Rao, AS ; Gubbi, J ; Tuan, N ; Nguyen, J ; Palaniswami, M ; Wyld, DC ; Wozniak, M ; Chaki, N ; Meghanathan, N ; Nagamalai, D (SPRINGER-VERLAG BERLIN, 2011-01-01)
    Wireless Sensor Networks (WSN) based Structural Health Monitoring (SHM) is becoming popular in analyzing the life of critical infrastructure such as bridges on a continuous basis. For most of the applications, data aggregation requires high sampling rate. A need for accurate time synchronization in the order of 0.6 − 9 μs every few minutes is necessary for data collection and analysis. Two-stage energy-efficient time synchronization is proposed in this paper. Firstly, the network is divided into clusters and a head node is elected using Low-Energy Adaptive Clustering Hierarchy based algorithm. Later, multiple packets of different lengths are used to estimate the delay between the elected head and the entire network hierarchically at different levels. Algorithmic scheme limits error to 3-hop worst case synchronization error. Unlike earlier energy-efficient time synchronization schemes, the achieved results increase the lifetime of the network.
  • Item
    Thumbnail Image
    Applications of phase change materials in concrete for sustainable built environment: a review
    JAYALATH, A ; Mendis, PA ; Gammampila, GR ; Aye, L (ICSECM 2011, 2011)
    The fast economic development around the globe and high standards of living imposes an ever increasing demand for energy. As a prime consumer of world‟s material and energy resources building and construction industry has a great potential in developing new efficient and environmentally friendly materials to reduce energy consumptions in buildings. Thermal energy storage systems (TES) with Phase change materials (PCM) offer attractive means of improving the thermal mass and the thermal comfort within a building. PCMs are latent heat thermal storage (LHTS) materials with high energy storage density compared to conventional sensible heat storage materials. Concrete incorporating PCM improves the thermal mass of the building which reduces the space conditioning energy consumption and extreme temperature fluctuations within the building. The heat capacity and high density of concrete coupled with latent heat storage of PCM provides a novel energy saving concepts for sustainable built environment. Microencapsulation is a latest and advanced technology for incorporation of PCM in to concrete which creates finely dispersed PCMs with high surface area for greater amount of heat transfer. This paper reviews available literature on Phase change materials in concrete, its application and numerical modelling of composite concrete. However most of the existing TES systems have been explored with wallboards and plaster materials and comparatively a few researches have been done on TES systems using cementitious materials. Thus, there is a need for comprehensive experimental and analytical investigations on PCM applications with cementitious materials as the most widely used construction materials in buildings.
  • Item
    Thumbnail Image
    Application of nanomaterials in the sustainable built environment
    Gammampila, GRG ; Mendis, PAM ; Ngo, TDN ; Aye, LA ; JAYALATH, A ; RUPASINGHE, RAM (University of Moratuwa, 2010)
    Nanotechnology is widely regarded as one of the twenty-first century’s key technologies, and its economic importance is sharply on the rise. In the construction industry, nanomaterials has potentials that are already usable today, especially the functional characteristics such as increased tensile strength, self-cleaning capacity, fire resistance, and additives based on nano materials make common materials lighter, more permeable, and more resistant to wear. Nanomaterial are also considered extremely useful for roofs and facades in the built environment. They also expand design possibilities for interior and exterior rooms and spaces. Nano–insulating materials open up new possibilities for ecologically oriented sustainable infrastructure development. It has been demonstrated that nanotechnology has invented products with many unique characteristics which could significantly provide solutions current construction issues and may change the requirement and organization of construction process. This paper examines and documents applicable nanotechnology based products that can improve the sustainable development and overall competitiveness of the construction industry.
  • Item
    Thumbnail Image
    Application of nano insulation materials in the sustainable built environment
    Gammampila, GRG ; Mendis, PAM ; Ngo, TDN ; Aye, LA ; Herath, NCH (University of Moratuwa, 2010)
    Nanotechnology is widely being used in the built environment for its advantages in many improved engineering properties of the nano materials. Nano insulating materials open up new possibilities for ecologically oriented sustainable infrastructure development. The most widely used nano material in built environment is for the purpose of insulation to improve the energy efficiency namely in the buildings and dwellings. Nanotechnology has now provided an effective and affordable means to increase energy efficiency in pre-existing buildings as well as new construction by increasing thermal resistance. The major advantage of nano insulation materials is its benefit of translucent coatings which increase the thermal envelope of a building without reducing the square footage. The intrinsic property of nano insulating material is it can be applied to windows to reduce heat transfer from solar radiation due it its thermal resistant property and the translucent property allows diffusing of day light. The nano insulating material has significant advantage in reducing the operational energy aspects of buildings due to its valuable insulating properties. This paper examines applicable nanotechnology based products that can improve the sustainable development and overall competitiveness of the building industry. The areas of applying nano insulating material in building industry will be mainly focused on the building envelope. The paper also examines the potential advantages of using nanotechnology based insulating material in reducing the life cycle energy, reduction of material usage and enhancing the useable life span. The paper also investigates the operational energy by simulation methodology and compares the reduction of operational energy consumption.
  • Item
    Thumbnail Image
    Endoplasmic reticulum stress promotes LIPIN2-dependent hepatic insulin resistance.
    Ryu, D ; Seo, W-Y ; Yoon, Y-S ; Kim, Y-N ; Kim, SS ; Kim, H-J ; Park, T-S ; Choi, CS ; Koo, S-H (American Diabetes Association, 2011-04)
    OBJECTIVE: Diet-induced obesity (DIO) is linked to peripheral insulin resistance-a major predicament in type 2 diabetes. This study aims to identify the molecular mechanism by which DIO-triggered endoplasmic reticulum (ER) stress promotes hepatic insulin resistance in mouse models. RESEARCH DESIGN AND METHODS: C57BL/6 mice and primary hepatocytes were used to evaluate the role of LIPIN2 in ER stress-induced hepatic insulin resistance. Tunicamycin, thapsigargin, and lipopolysaccharide were used to invoke acute ER stress conditions. To promote chronic ER stress, mice were fed with a high-fat diet for 8-12 weeks. To verify the role of LIPIN2 in hepatic insulin signaling, adenoviruses expressing wild-type or mutant LIPIN2, and shRNA for LIPIN2 were used in animal studies. Plasma glucose, insulin levels as well as hepatic free fatty acids, diacylglycerol (DAG), and triacylglycerol were assessed. Additionally, glucose tolerance, insulin tolerance, and pyruvate tolerance tests were performed to evaluate the metabolic phenotype of these mice. RESULTS: LIPIN2 expression was enhanced in mouse livers by acute ER stress-inducers or by high-fat feeding. Transcriptional activation of LIPIN2 by ER stress is mediated by activating transcription factor 4, as demonstrated by LIPIN2 promoter assays, Western blot analyses, and chromatin immunoprecipitation assays. Knockdown of hepatic LIPIN2 in DIO mice reduced fasting hyperglycemia and improved hepatic insulin signaling. Conversely, overexpression of LIPIN2 impaired hepatic insulin signaling in a phosphatidic acid phosphatase activity-dependent manner. CONCLUSIONS: These results demonstrate that ER stress-induced LIPIN2 would contribute to the perturbation of hepatic insulin signaling via a DAG-protein kinase C ε-dependent manner in DIO mice.
  • Item
    Thumbnail Image
    The within-day behaviour of 6 minute rainfall intensity in Australia
    Western, AW ; Anderson, B ; Siriwardena, L ; Chiew, FHS ; Seed, A ; Bloeschl, G (COPERNICUS GESELLSCHAFT MBH, 2011)
    Abstract. The statistical behaviour and distribution of high-resolution (6 min) rainfall intensity within the wet part of rainy days (total rainfall depth >10 mm) is investigated for 42 stations across Australia. This paper compares nine theoretical distribution functions (TDFs) in representing these data. Two goodness-of-fit statistics are reported: the Root Mean Square Error (RMSE) between the fitted and observed within-day distribution; and the coefficient of efficiency for the fit to the highest rainfall intensities (average intensity of the 5 highest intensity intervals) across all days at a site. The three-parameter Generalised Pareto distribution was clearly the best performer. Good results were also obtained from Exponential, Gamma, and two-parameter Generalized Pareto distributions, each of which are two parameter functions, which may be advantageous when predicting parameter values. Results of different fitting methods are compared for different estimation techniques. The behaviour of the statistical properties of the within-day intensity distributions was also investigated and trends with latitude, Köppen climate zone (strongly related to latitude) and daily rainfall amount were identified. The latitudinal trends are likely related to a changing mix of rainfall generation mechanisms across the Australian continent.
  • Item
    Thumbnail Image
    The Murrumbidgee soil moisture monitoring network data set
    Smith, AB ; Walker, JP ; Western, AW ; Young, RI ; Ellett, KM ; Pipunic, RC ; Grayson, RB ; Siriwardena, L ; Chiew, FHS ; Richter, H (American Geophysical Union, 2012-07-17)
    This paper describes a soil moisture data set from the 82,000 km2 Murrumbidgee River Catchment in southern New South Wales, Australia. Data have been archived from the Murrumbidgee Soil Moisture Monitoring Network (MSMMN) since its inception in September 2001. The Murrumbidgee Catchment represents a range of conditions typical of much of temperate Australia, with climate ranging from semiarid to humid and land use including dry land and irrigated agriculture, remnant native vegetation, and urban areas. There are a total of 38 soil moisture-monitoring sites across the Murrumbidgee Catchment, with a concentration of sites in three subareas. The data set is composed of 0–5 (or 0–8), 0–30, 30–60, and 60–90 cm average soil moisture, soil temperature, precipitation, and other land surface model forcing at all sites, together with other ancillary data. These data are available on the World Wide Web at http://www.oznet.org.au.
  • Item
    Thumbnail Image
    Analytical methods for ecosystem resilience: A hydrological investigation
    Peterson, TJ ; Western, AW ; Argent, RM (AMERICAN GEOPHYSICAL UNION, 2012-10-16)
    In recent years a number of papers have quantitatively explored multiple steady states and resilience within a wide range of hydrological systems. Many have identified multiple steady states by conducting simulations from different initial state variables and a few have used the more advanced technique of equilibrium or limit cycle continuation analysis to quantify how the number of steady states may change with a single model parameter. However, like resilience investigations into other natural systems, these studies often omit explanation of these fundamental resilience science techniques; rely on complex numerical methods rather than analytical methods; and overlook use of more advanced techniques from nonlinear systems mathematics. In the interests of wider adoption of advanced resilience techniques within hydrology, and advancing resilience science more broadly, this paper details fundamental methods for quantitative resilience investigations. Using a simple model of a spatially lumped unconfined aquifer, one and two parameter continuation analysis was undertaken algebraically. The shape of each steady state attractor basin was then quantified using Lyapunov stability curves derived at a range of precipitation rates, but was found to be inconsistent with the resilience behavior demonstrated by stochastic simulations. Most notably, and contrary to standard resilience concepts, the switching between steady states from wet or dry periods (and vice versa) did not occur by crossing of the threshold between the steady states. It occurred by exceedance of the two steady-state domain, producing a counterclockwise hysteresis loop. Additionally, temporary steady states were identified that could not have been detected using equilibrium continuation with a constant forcing rate. By combining these findings with the Lyapunov stability curves, new measures of resilience were developed for endogenous disturbances to the model and for the recovery from disturbances exogenous to the model.
  • Item
    Thumbnail Image
    Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale
    Rosenbaum, U ; Bogena, HR ; Herbst, M ; Huisman, JA ; Peterson, TJ ; Weuthen, A ; Western, AW ; Vereecken, H (AMERICAN GEOPHYSICAL UNION, 2012-10-27)
    Our understanding of short- and long-term dynamics of spatial soil moisture patterns is limited due to measurement constraints. Using new highly detailed data, this research aims to examine seasonal and event-scale spatial soil moisture dynamics in the topsoil and subsoil of the small spruce-covered Ẅstebach catchment, Germany. To accomplish this, univariate and geo-statistical analyses were performed for a 1 year long 4-D data set obtained with the wireless sensor network SoilNet. We found large variations in spatial soil moisture patterns in the topsoil, mostly related to meteorological forcing. In the subsoil, temporal dynamics were diminished due to soil water redistribution processes and root water uptake. Topsoil range generally increased with decreasing soil moisture. The relationship between the spatial standard deviation of the topsoil soil moisture (SDθ) and mean water content (θ) showed a convex shape, as has often been found in humid temperate climate conditions. Observed scatter in topsoil SD θ(θ) was explained by seasonal and event-scale SD θ(θ) dynamics, possibly involving hysteresis at both time scales. Clockwise hysteretic SDθ(θ) dynamics at the event scale were generated under moderate soil moisture conditions only for intense precipitation that rapidly wetted the topsoil and increased soil moisture variability controlled by spruce throughfall patterns. This hysteretic effect increased with increasing precipitation, reduced root water uptake, and high groundwater level. Intense precipitation on dry topsoil abruptly increased SDθ but only marginally increased mean soil moisture. This was due to different soil rewetting behavior in drier upslope areas (hydrophobicity and preferential flow caused minor topsoil recharge) compared with the moderately wet valley bottom (topsoil water storage), which led to a more spatially organized pattern. This study showed that spatial soil moisture patterns monitored by a wireless sensor network varied with depth, soil moisture content, seasonally, and within single wetting and drying episodes. This was controlled by multiple factors including soil properties, topography, meteorological forcing, vegetation, and groundwater.
  • Item
    Thumbnail Image
    The Impact of Extreme Low Flows on the Water Quality of the Lower Murray River and Lakes (South Australia)
    Mosley, LM ; Zammit, B ; Leyden, E ; Heneker, TM ; Hipsey, MR ; Skinner, D ; Aldridge, KT (Springer Science and Business Media LLC, 2012-10)