Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 25
  • Item
    Thumbnail Image
    Integrated assessment of the use of recycled concrete aggregate replacing natural aggregate in structural concrete
    Wijayasundara, M ; Mendis, P ; Crawford, RH (Elsevier, 2018)
    The use of recycled concrete aggregate (RCA) replacing natural aggregate (NA) to produce concrete named as recycled aggregate concrete (RAC) has gained increased importance in the last few decades. Despite many visible advantages associated with the initiative, RAC is not manufactured at commercial scale to replace natural aggregate concrete (NAC) used as structural concrete in Australia presently. To identify whether the production of RAC should be favoured against NAC, an integrated assessment combining multiple criteria is essential as the previous research findings provide mixed outcomes on financial viability, product performance and environmental performance. This paper uses an integrated assessment methodology employing cost-benefit analysis (CBA) which combines the financial, direct and indirect environmental, social outcomes associated with the initiative to evaluate its suitability. By combining several qualitative and quantitative studies published by the author/s, an integral result to compare the use of RCA replacing NA in structural applications is conducted in this study. Net present value (NPV) to society associated with a unit volume of RAC is evaluated as a representative indicator to compare RAC against NAC in this paper. The results state that a unit volume of RAC results in a positive NPV of 4.2–6.0% of the price of NAC for 30% replacement (and 16.3–22.6% for 100%), prior to being used in a building r. Simulation of application of the RAC to two case study buildings indicate that the average price of concrete used in the buildings is decreased by 4.1–6.1%. The results indicate that, if the external benefit associated with the production of RAC is internalised and passed on to the purchaser of the product, production of RAC in structural buildings result in a positive NPV and saving of building material costs to the contractor.
  • Item
    Thumbnail Image
    Net incremental indirect external benefit of manufacturing recycled aggregate concrete
    Wijayasundara, M ; Mendis, P ; Crawford, RH (Elsevier, 2018-08-01)
    Concrete waste (CW) either reaches landfill with mixed waste or crushed to produce crushed concrete (CC) used as a road-base product in Australia. The coarse portion of CC, referred to as recycled concrete aggregate (RCA) has the potential to be used as an aggregate in structural concrete replacing natural aggregate (NA). The environmental performance of RAC has been studied in comparison to NAC, in terms of direct environmental implications (DEI) concerning the processes in the production chain of these products. However, when replacement at industry level is considered, the implications go beyond the DEI, and affect a series of other products/processes within a system boundary, referred to as indirect environmental implications (IEI). This paper quantifies the key IEI associated with the use of RCA in structural concrete and evaluates the external costs and benefits associated with it using economic evaluation methods. The net benefit associated with the avoidance of landfill of CW, extraction of NA, and transportation of waste and by-products are the major externalities identified and quantified in this paper. Evaluation of these suggest that there is a significant net benefit ranging from 9% to 28% of the price of natural aggregate concrete (NAC) with the production of recycled aggregate concrete (RAC), for RCA replacement rates between 30% and 100%.
  • Item
    Thumbnail Image
    Design and Development of Weatherproof Seals for Prefabricated Construction: A Methodological Approach
    Orlowski, K ; Shanaka, K ; Mendis, P (MDPI, 2018-09)
    Satisfactory weatherproofing of buildings is vital to maximise their design life and performance which requires the careful design of external sealing technologies. Systems commonly available have served well in conventional construction however with many prefabricated systems emerging in the building industry new and novel means of weatherproofing between panels and modules need to be developed purpose specific to this application. This paper presents a holistic and fundamental methodological approach to Design and Development of waterproof seals and has been applied specific for prefabricated panelised and modular systems. Two purpose specific weatherproof seals are finally presented. Flow charts of the overview of the suggested methodological approach and the processes within which include DfMA that have been incorporated into understanding and developing seals for this practical application. These strategies have enabled a resourceful and holistic set of processes that can be adapted and used for similar forms of product research in new and developing areas of construction such as prefabrication. The design and development process is thoroughly investigated and has resulted in an exploration of the technical challenges and potential solutions which take into consideration factors from installation limitations to building tolerances.
  • Item
    Thumbnail Image
    Bone fracture healing under Ilizarov fixator: Influence of fixator configuration, fracture geometry, and loading
    Ganadhiepan, G ; Miramini, S ; Patel, M ; Mendis, P ; Zhang, L (WILEY, 2019-06-01)
    This study aims to enhance the understanding of the relationship between Ilizarov fixator configuration and its effects on bone fracture healing. Using Taylor spatial frame (TSF) as an example, the roles of critical parameters (ie, TSF ring diameter, wire pre‐tension, fracture gap size, and axial load) that govern fracture healing during the early stages were investigated by using computational modelling in conjunction with mechanical testing involving an advanced 3D optical measurement system. The computational model was first validated using the mechanical test results and then used to simulate mesenchymal stem cell (MSC) differentiations within different regions of the fracture site under various combinations of TSF ring diameter, wire pre‐tension, fracture gap size, and axial load values. Predicted spatially dependent MSC differentiation patterns and the influence of each parameter on differentiations were compared with in vivo results, and good agreement was seen between the two. Gap size was identified as the most influential parameter in MSC differentiation, and the influence of axial loading and TSF configuration (ie, ring diameter and wire pre‐tension) on cell differentiation was seen to be gap size dependent. Most changes in cell differentiation were predicted in the external callus (periosteal), which is the crucial region of the callus in the early stages. However, for small gap sizes (eg, 1 mm), significant changes were predicted in the endosteal callus as well. The study exhibits the potential of computational models in assessing the performance of Ilizarov fixators as well as assisting surgeons in patient‐specific clinical treatment planning.
  • Item
    Thumbnail Image
    Role of Dynamic Loading on Early Stage of Bone Fracture Healing
    Ghimire, S ; Miramini, S ; Richardson, M ; Mendis, P ; Zhang, L (SPRINGER, 2018-11)
    After fracture, mesenchymal stem cells (MSCs) and growth factors migrate into the fracture callus to exert their biological actions. Previous studies have indicated that dynamic loading induced tissue deformation and interstitial fluid flow could produce a biomechanical environment which significantly affects the healing outcomes. However, the fundamental relationship between the various loading regimes and different healing outcomes has not still been fully understood. In this study, we present an integrated computational model to investigate the effect of dynamic loading on early stage of bone fracture healing. The model takes into account cell and growth factor transport under dynamic loading, and mechanical stimuli mediated MSC differentiation and tissue production. The developed model was firstly validated by the available experimental data, and then implemented to identify the loading regimes that produce the optimal healing outcomes. Our results demonstrated that dynamic loading enhances MSC and growth factor transport in a spatially dependent manner. For example, compared to free diffusion, dynamic loading could significantly increase MSCs concentration in endosteal zone; and chondrogenic growth factors in both cortical and periosteal zones in callus. Furthermore, there could be an optimal dynamic loading regime (e.g. 10% strain at 1 Hz) which could potentially significant enhance endochondral ossification.
  • Item
    Thumbnail Image
    Relationship of Stiffness-Based Indentation Properties Using Continuous-Stiffness-Measurement Method.
    Huen, WY ; Lee, H ; Vimonsatit, V ; Mendis, P (M D P I AG, 2019-12-24)
    The determination of elastic modulus (E) and hardness (H) relies on the accuracy of the contact area under the indenter tip, but this parameter cannot be explicitly measured during the nanoindentation process. This work presents a new approach that can derive the elastic modulus (E) and contact depth (hc) based on measured experiment stiffness using the continuous-stiffness-measurement (CSM) method. To achieve this, an inverse algorithm is proposed by incorporating a set of stiffness-based relationship functions that are derived from combining the dimensional analysis approach and computational simulation. This proposed solution considers both the sink-in and pile-up contact profiles; therefore, it provides a more accurate solution when compared to a conventional method that only considers the sink-in contact profile. While the proposed solution is sensitive to Poisson's ratio (ν) and the equivalent indentation conical angle (θ), it is not affected by material plasticity, including yield strength (σy) and work hardening (n) for the investigated range of 0.001 < σy/E < 0.5. The proposed stiffness-based approach can be used to consistently derive elastic modulus and hardness by using stiffness and the load-and-unload curve measured by the continuous-stiffness-measurement (CSM) method.
  • Item
    Thumbnail Image
    Strength Development and Thermogravimetric Investigation of High-Volume Fly Ash Binders
    Zhou, Z ; Sofi, M ; Lumantarna, E ; San Nicolas, R ; Kusuma, GH ; Mendis, P (MDPI, 2019-10)
    To address sustainability issues by facilitating the use of high-volume fly ash (HVFA) concrete in industry, this paper investigates the early age hydration properties of HVFA binders in concrete and the correlation between hydration properties and compressive strengths of the cement pastes. A new method of calculating the chemically bound water of HVFA binders was used and validated. Fly ash (FA) types used in this study were sourced from Indonesia and Australia for comparison. The water to binder (w/b) ratio was 0.4 and FA replacement levels were 40%, 50% and 60% by weight. Isothermal calorimetry tests were conducted to study the heat of hydration which was further converted to the adiabatic temperature rise. Thermo-gravimetric analysis (TGA) was employed to explore the chemically bound water (WB) of the binders. The results showed that Australian FA pastes had higher heat of hydration, adiabatic temperature rise, WB and compressive strength compared to Indonesian FA pastes. The new method of calculating chemically bound water can be successfully applied to HVFA binders. Linear correlation could be found between the WB and compressive strength.
  • Item
    No Preview Available
    Parametric study of the effect of thermal properties and ambient temperature on tensile stress and strength development in mass concrete
    Zhong, A ; Sofi, M ; Lumantarna, E ; Mendis, P (The International Federation for Structural Concrete (FIB), 2019-01-01)
    Thermal stress typically takes place at early ages when concrete is undergoing exothermic hydration reaction and is restricted from expansion and contraction by surrounding structural elements. In mass concrete structures, the relatively large temperature differences between the core and the surface produce differential dilation which leads to tensile stresses. Potential tensile cracks develop when the stress experienced by the concrete exceeds the concurrent strength of the maturing concrete. This effect in turn can lead to performance reduction, or in some instances, instability of structure and must be dealt with care. While published literature reports extensively on hydration based mechanical properties of concrete, only a few has considered investigating the in-situ performance of the material accounting for thermal stresses. In what concerns crack formation, consideration of the thermo-mechanical boundary conditions are important nuts that have not been investigated explicitly. This research aims to provide insight into the impacts of thermal related parameters on early age concrete crack formation through computational modelling.
  • Item
    Thumbnail Image
    Hydration and Strength Evolution of Ternary-Blend High-Volume Fly Ash Concretes
    Gunasekera, C ; Zhou, Z ; Sofi, M ; Law, DW ; Setunge, S ; Mendis, P (American Concrete Institute, 2019-09-01)
    The increase of carbon emissions due to the annual growth of portland cement (PC) production has promoted research into the development of sustainable green concrete using a range of readily available industrial waste materials. The present study is focused on developing two high-volume fly ash (HVFA) concretes with cement replacement levels of 65% (HVFA-65) and 80% (HVFA-80). The required lime for both HVFA concrete mixtures was initially determined and the optimized mixture designs identified, based on the 28-day compressive strength, by varying the low-calcium Class F fly ash-hydrated lime composition. The optimized concrete mixtures achieved a compressive strength of 53 and 40 MPa (7.69 and 5.80 ksi) for HVFA-65 and HVFA-80 concretes, respectively. The early-stage strength development is dependent on the matrix produced in the specific HVFA concrete, which is itself dependent on the number of unreacted fly ash spheres. The increase of fly ash and hydrated lime dosage in HVFA concrete increases the rate of hydration of the C3A and C4AF phases, but decreases the hydration of the C3S phase, which resulted in lower early-age strength development than occurs in PC concrete. It was noted that the initial setting time of HVFA concretes increase with an increase of fly ash content. However, addition of hydrated lime accelerates the hydration and decreases the final setting time for HVFA concretes.
  • Item
    Thumbnail Image
    Prefabrication of substructures for single-detached dwellings on reactive soils: a review of existing systems and design challenges
    Teodosio, B ; Baduge, KSK ; Mendis, P ; Heath, DJ (Taylor & Francis, 2019-08-27)
    The possible thriving Australian construction industry for residential structures has been hindered by skilled labour shortage and eventually triggered housing shortage and affordability crisis. Prefabrication is a promising method to alleviate issues related to housing shortage and affordability by reducing material wastage, construction delays, weather impacts, unexpected costs, skilled labour dependence and construction risks. The full potential of prefabricated construction is yet to be realised in part due to most of developments being focused on its superstructure. Prefabricated substructures should conform with the Ultimate Limit State (i.e. strength capacity) and the Serviceability Limit State (i.e. allowable deformation and damage) stated in the Australian Standards. Due to the initiatives to alleviate issues of housing crisis, skilled labour shortage and unpredictable house damage, it is necessary to review the existing available substructures suitable for single-detached dwellings on reactive soils and to evaluate the necessary considerations and challenges in developing prefabricated substructures. This review will help understand the present state of the design and construction industry and the efforts of inventors and designers to reduce damages due to the shrinking and swelling ground movements. This review also guides product developers to design systems having robust performance without compromising practicality.