Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 61
  • Item
    Thumbnail Image
    Applications of phase change materials in concrete for sustainable built environment: a review
    JAYALATH, A ; Mendis, PA ; Gammampila, GR ; Aye, L (ICSECM 2011, 2011)
    The fast economic development around the globe and high standards of living imposes an ever increasing demand for energy. As a prime consumer of world‟s material and energy resources building and construction industry has a great potential in developing new efficient and environmentally friendly materials to reduce energy consumptions in buildings. Thermal energy storage systems (TES) with Phase change materials (PCM) offer attractive means of improving the thermal mass and the thermal comfort within a building. PCMs are latent heat thermal storage (LHTS) materials with high energy storage density compared to conventional sensible heat storage materials. Concrete incorporating PCM improves the thermal mass of the building which reduces the space conditioning energy consumption and extreme temperature fluctuations within the building. The heat capacity and high density of concrete coupled with latent heat storage of PCM provides a novel energy saving concepts for sustainable built environment. Microencapsulation is a latest and advanced technology for incorporation of PCM in to concrete which creates finely dispersed PCMs with high surface area for greater amount of heat transfer. This paper reviews available literature on Phase change materials in concrete, its application and numerical modelling of composite concrete. However most of the existing TES systems have been explored with wallboards and plaster materials and comparatively a few researches have been done on TES systems using cementitious materials. Thus, there is a need for comprehensive experimental and analytical investigations on PCM applications with cementitious materials as the most widely used construction materials in buildings.
  • Item
    Thumbnail Image
    Application of nanomaterials in the sustainable built environment
    Gammampila, GRG ; Mendis, PAM ; Ngo, TDN ; Aye, LA ; JAYALATH, A ; RUPASINGHE, RAM (University of Moratuwa, 2010)
    Nanotechnology is widely regarded as one of the twenty-first century’s key technologies, and its economic importance is sharply on the rise. In the construction industry, nanomaterials has potentials that are already usable today, especially the functional characteristics such as increased tensile strength, self-cleaning capacity, fire resistance, and additives based on nano materials make common materials lighter, more permeable, and more resistant to wear. Nanomaterial are also considered extremely useful for roofs and facades in the built environment. They also expand design possibilities for interior and exterior rooms and spaces. Nano–insulating materials open up new possibilities for ecologically oriented sustainable infrastructure development. It has been demonstrated that nanotechnology has invented products with many unique characteristics which could significantly provide solutions current construction issues and may change the requirement and organization of construction process. This paper examines and documents applicable nanotechnology based products that can improve the sustainable development and overall competitiveness of the construction industry.
  • Item
    Thumbnail Image
    Application of nano insulation materials in the sustainable built environment
    Gammampila, GRG ; Mendis, PAM ; Ngo, TDN ; Aye, LA ; Herath, NCH (University of Moratuwa, 2010)
    Nanotechnology is widely being used in the built environment for its advantages in many improved engineering properties of the nano materials. Nano insulating materials open up new possibilities for ecologically oriented sustainable infrastructure development. The most widely used nano material in built environment is for the purpose of insulation to improve the energy efficiency namely in the buildings and dwellings. Nanotechnology has now provided an effective and affordable means to increase energy efficiency in pre-existing buildings as well as new construction by increasing thermal resistance. The major advantage of nano insulation materials is its benefit of translucent coatings which increase the thermal envelope of a building without reducing the square footage. The intrinsic property of nano insulating material is it can be applied to windows to reduce heat transfer from solar radiation due it its thermal resistant property and the translucent property allows diffusing of day light. The nano insulating material has significant advantage in reducing the operational energy aspects of buildings due to its valuable insulating properties. This paper examines applicable nanotechnology based products that can improve the sustainable development and overall competitiveness of the building industry. The areas of applying nano insulating material in building industry will be mainly focused on the building envelope. The paper also examines the potential advantages of using nanotechnology based insulating material in reducing the life cycle energy, reduction of material usage and enhancing the useable life span. The paper also investigates the operational energy by simulation methodology and compares the reduction of operational energy consumption.
  • Item
    No Preview Available
    A multi-layered energy resilience framework and metrics for energy master planning of communities: A university campus case study
    Charani Shandiz, S ; Rismanchi, B ; Foliente, G ; Aye, L (Society of Risk Analysis, 2021-12-05)
  • Item
    No Preview Available
  • Item
    Thumbnail Image
    An innovative cost-effective floating solar still with integrated condensation coils
    Mohsenzadeh, M ; Aye, L ; Christopher, P (Australian PV Institute, 2021-12-16)
  • Item
    Thumbnail Image
    An update on Activity C1 Design Tools and Models, Task 65 Solar Cooling Sunbelt Regions
    Aye, L ; Daborer-Prado, N ; Neyer, D ; Jakob, U (Australian PV Institute, 2021-12-16)
  • Item
    Thumbnail Image
    A Machine Learning Approach for the Performance Prediction of GCHPs with Horizontal Ground Heat Exchangers
    Zhou, Y ; Narsilio, G ; Makasis, N ; Aye, L ; LopezAcosta, NP ; MartinezHernandez, E ; EspinosaSantiago, AL ; MendozaPromotor, JA ; Lopez, AO (IOS PRESS, 2019-01-01)
    This study aims to provide a machine learning approach to predict the performance of Ground Coupled Heat Pumps (GCHPs) with horizontal Ground Heat Exchangers (GHEs). Specifically, an ANN model was developed for this purpose which can potentially be generally applied to similar sites at different locations and climate conditions, with even limited types of input data. In this example, a TRNSYS model regarding a typical horizontal trench within a rural farm in Australia, has been developed and verified, covering over 50 different yearly loading patterns under 3 different climate conditions. The simulated performance data is then used to train the artificial neural network. As results, the trained ANN is able to predict the performance of GSHPs systems with identical GHEs even under climatic conditions (and locations) that has not been specifically trained for. With only limited input data, the presented ANN shows no more than 5% error in most cases tested.
  • Item
    Thumbnail Image
    Effects of substrate depth and native plants on green roof thermal performance in South-East Australia
    Pianella, A ; Aye, L ; Chen, Z ; Williams, N (IOP Publishing, 2020-11-20)
    Three experimental green roofs in Melbourne with depth of 100, 150 and 300 mm have been assessed to quantify their thermal performance. To evaluate the benefit of substrate depth, temperature was recorded every 50 mm along a vertical profile. Green roofs consisted of scoria substrate and a mix of three species of plants: Lomandra longifolia, Dianella dmixta and Stypandra glauca. Statistical analyses applying the hierarchical partitioning technique showed that solar radiation is the main driver affecting the green roof surface temperature, air temperature has strong correlations with the variations of the temperatures recorded below the surface, while moisture content has the least influence. Temperature profiles of the green roof show that the first 50 mm do reduce the heat flowing through the green roof substrate regardless the total green roof substrate depth. Differences in thermal performance arise at deeper points, where thicker green roofs are able to delay the change of substrate temperatures. Similar effects were found for the heat fluxes measured at the interface between the green roof and building roof. These results confirmed that green roofs may be used as a sustainable passive technology to reduce building energy consumptions for South-East Australia climate.
  • Item
    Thumbnail Image
    Undisturbed ground temperature in Melbourne
    Shah, SK ; Aye, L ; Rismanchi, B ; Sadrul Islam, AKM ; Ruhul Amin, M ; Ali, M (AIP Publishing, 2019-07-18)
    The ground surface temperature changes with the diurnal cycle of solar radiation and ambient air temperature. However, the amplitude of the ground temperature variation diminishes with the increase of the depth of the ground and after a certain depth of the ground, it becomes almost constant, where is termed "undisturbed ground temperature (UGT)". At this depth, the seasonal changes of solar radiation and ambient air temperature changes will no longer affect onground temperature. It is one of the important parameters for designing of the ground heat exchangers and building energy analyses. In this study ground temperatures at various depths in Melbourne were investigated using a 40 m deep borehole instrumented with thermistors. The ground temperatures at various depths (0 m to 40 m) in Melbourne were also simulated by using three methods: Kasuda formula method, simulation (TRNSYS, Type 77), and simplified correlation (developed by Ouzzane et al. in 2015) and the results were compared with the measured data. Root mean square error (RMSE) and mean bias error (MBE)were used to validate and verify the methods. It was found that the estimated ground temperatures at 2, 21, and 40 m depths by Kasuda formula method and simulation (TRNSYS)have the same trends as that of the measured data. The measured annual temperatures of ground at 2 m depth were between 14.7°C and 19.8°C, while the temperature at 21 m and 40 m depths remained almost constant. RMSE and MBE of the simulation (TRNSYS, Type 77) were found to be 1.39°C, and -1.39°C respectively compared to measured data at 21 m depth. Based on these values, we conclude that simulation (TRNSYS, Type 77) can reliably predict the ground temperature for the selected site in Melbourne.