Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 428
  • Item
    Thumbnail Image
    Energy Efficient Time Synchronization in WSN for Critical Infrastructure Monitoring
    Rao, AS ; Gubbi, J ; Tuan, N ; Nguyen, J ; Palaniswami, M ; Wyld, DC ; Wozniak, M ; Chaki, N ; Meghanathan, N ; Nagamalai, D (SPRINGER-VERLAG BERLIN, 2011-01-01)
    Wireless Sensor Networks (WSN) based Structural Health Monitoring (SHM) is becoming popular in analyzing the life of critical infrastructure such as bridges on a continuous basis. For most of the applications, data aggregation requires high sampling rate. A need for accurate time synchronization in the order of 0.6 − 9 μs every few minutes is necessary for data collection and analysis. Two-stage energy-efficient time synchronization is proposed in this paper. Firstly, the network is divided into clusters and a head node is elected using Low-Energy Adaptive Clustering Hierarchy based algorithm. Later, multiple packets of different lengths are used to estimate the delay between the elected head and the entire network hierarchically at different levels. Algorithmic scheme limits error to 3-hop worst case synchronization error. Unlike earlier energy-efficient time synchronization schemes, the achieved results increase the lifetime of the network.
  • Item
    Thumbnail Image
    A novel approach for 3D neighbourhood analysis
    Emamgholian, S ; Taleai, M ; Shojaei, D (Copernicus GmbH, 2017-09-12)
    Abstract. Population growth and lack of land in urban areas have caused massive developments such as high rises and underground infrastructures. Land authorities in the international context recognizes 3D cadastres as a solution to efficiently manage these developments in complex cities. Although a 2D cadastre does not efficiently register these developments, it is currently being used in many jurisdictions for registering land and property information. Limitations in analysis and presentation are considered as examples of such limitations. 3D neighbourhood analysis by automatically finding 3D spaces has become an issue of major interest in recent years. Whereas the neighbourhood analysis has been in the focus of research, the idea of 3D neighbourhood analysis has rarely been addressed in 3 dimensional information systems (3D GIS) analysis. In this paper, a novel approach for 3D neighbourhood analysis has been proposed by recording spatial and descriptive information of the apartment units and easements. This approach uses the coordinates of the subject apartment unit to find the neighbour spaces. By considering a buffer around the edges of the unit, neighbour spaces are accurately detected. This method was implemented in ESRI ArcScene and three case studies were defined to test the efficiency of this approach. The results show that spaces are accurately detected in various complex scenarios. This approach can also be applied for other applications such as property management and disaster management in order to find the affected apartments around a defined space.
  • Item
    Thumbnail Image
    Translating Place-Related Questions to GeoSPARQL Queries
    Hamzei, E ; Tomko, M ; Winter, S (ACM, 2022-04-25)
    Many place-related questions can only be answered by complex spatial reasoning, a task poorly supported by factoid question retrieval. Such reasoning using combinations of spatial and non-spatial criteria pertinent to place-related questions is increasingly possible on linked data knowledge bases. Yet, to enable question answering based on linked knowledge bases, natural language questions must first be re-formulated as formal queries. Here, we first present an enhanced version of YAGO2geo, the geospatially-enabled variant of the YAGO2 knowledge base, by linking and adding more than one million places from OpenStreetMap data to YAGO2. We then propose a novel approach to translate the place-related questions into logical representations, theoretically grounded in the core concepts of spatial information. Next, we use a dynamic template-based approach to generate fully executable GeoSPARQL queries from the logical representations. We test our approach using the Geospatial Gold Standard dataset and report substantial improvements over existing methods.
  • Item
    Thumbnail Image
    Plate anchor capacity estimation through CPT tip resistance in sand
    Roy, A ; Chow, S ; Gottardi, G ; Tonni, L (Taylor and Francis group, 2022-06-15)
    Reliable estimation of plate anchor uplift capacity in sand through analytical and empirical equations is often complicated due to uncertainties in estimation of soil properties required in the equations. In order to address this uncertainty, this study proposes a correlation to estimate plate anchor vertical uplift capacity in sand based on cone tip resistance measured from cone penetrometer tests (CPT). The correlation was established using a database of reported centrifuge experiments on circular, rectangular and strip anchors in loose and dense silica sand at various embedment depths and g-levels, along with the corresponding centrifuge CPTs performed in the same testing boxes. The centrifuge cone tip resistances were also depth-corrected to remove the effect of shallow embedment. Through regression analyses, the correlation between plate anchor capacity and cone tip resistance in dimensionless form was developed, with different coefficients fitted for circular, rectangular and strip anchors respectively.
  • Item
    Thumbnail Image
    Towards Understanding Evapotranspiration Shifts Under a Drying Climate
    Gardiya Weligamage, H ; Fowler, K ; Peterson, T ; Saft, M ; Ryu, D ; Peel, M (Copernicus, 2022-03-28)
    Around 60 percent of terrestrial precipitation on the global average transforms into evapotranspiration. However, reliable estimation of actual evapotranspiration (AET) is challenging as it depends on multiple climatic and biophysical factors. Despite developments such as remotely sensed AET products, AET responses to prolonged drought is still poorly understood. Therefore, this study focuses on understanding long-term changes and variability of AET prior to and during the Millennium Drought in Victoria, Australia. We also investigate the capability of commonly used rainfall-runoff models to simulate AET under multiyear droughts. Therefore, we employ simple sensitivity analysis to examine four different water balance approaches between pre-drought and drought periods in six different study catchments in Victoria. The first water balance approach is the simplest long-term water balance approach, partitioning long-term precipitation into evapotranspiration and runoff. The second water balance approach adopts a long-term change in storage to the water balance during the Millennium Drought by employing regional-scale change in GRACE estimates derived from Fowler et al. (2020). The third and fourth water balances are based on simulations from SIMHYD and SACRAMENTO. Surprisingly, the adoption of long-term change in storage during the Millennium Drought indicates that the annual rates of pre-drought AET were largely maintained throughout the drought; i.e. the rate was relatively constant with time. This suggests that AET gets priority over streamflow following a drying shift in precipitation partitioning; resulting in a relatively constant AET under multiyear drought. In contrast, the rainfall-runoff models underestimated AET during the drought compared to both water balance approaches. These results broadly acknowledge the need for model improvements to provide more realistic AET estimates under future drying climates and provide a new perspective on recent hydrological phenomena such as changing rainfall-runoff relationships in these regions. Furthermore, this sensitivity analysis was augmented and confirmed by a regional-scale water balance approach.
  • Item
    No Preview Available
    PARAMETER CONSIDERATIONS FOR THE RETRIEVAL OF SURFACE SOIL MOISTURE FROM SPACEBORNE GNSS-R
    Munoz-Martin, JF ; Onrubia, R ; Pascual, D ; Park, H ; Camps, A ; Rüdiger, C ; Walker, JP ; Monerris, A (IEEE, 2021-01-01)
  • Item
    Thumbnail Image
    Applications of phase change materials in concrete for sustainable built environment: a review
    JAYALATH, A ; Mendis, PA ; Gammampila, GR ; Aye, L (ICSECM 2011, 2011)
    The fast economic development around the globe and high standards of living imposes an ever increasing demand for energy. As a prime consumer of world‟s material and energy resources building and construction industry has a great potential in developing new efficient and environmentally friendly materials to reduce energy consumptions in buildings. Thermal energy storage systems (TES) with Phase change materials (PCM) offer attractive means of improving the thermal mass and the thermal comfort within a building. PCMs are latent heat thermal storage (LHTS) materials with high energy storage density compared to conventional sensible heat storage materials. Concrete incorporating PCM improves the thermal mass of the building which reduces the space conditioning energy consumption and extreme temperature fluctuations within the building. The heat capacity and high density of concrete coupled with latent heat storage of PCM provides a novel energy saving concepts for sustainable built environment. Microencapsulation is a latest and advanced technology for incorporation of PCM in to concrete which creates finely dispersed PCMs with high surface area for greater amount of heat transfer. This paper reviews available literature on Phase change materials in concrete, its application and numerical modelling of composite concrete. However most of the existing TES systems have been explored with wallboards and plaster materials and comparatively a few researches have been done on TES systems using cementitious materials. Thus, there is a need for comprehensive experimental and analytical investigations on PCM applications with cementitious materials as the most widely used construction materials in buildings.
  • Item
    Thumbnail Image
    Application of nanomaterials in the sustainable built environment
    Gammampila, GRG ; Mendis, PAM ; Ngo, TDN ; Aye, LA ; JAYALATH, A ; RUPASINGHE, RAM (University of Moratuwa, 2010)
    Nanotechnology is widely regarded as one of the twenty-first century’s key technologies, and its economic importance is sharply on the rise. In the construction industry, nanomaterials has potentials that are already usable today, especially the functional characteristics such as increased tensile strength, self-cleaning capacity, fire resistance, and additives based on nano materials make common materials lighter, more permeable, and more resistant to wear. Nanomaterial are also considered extremely useful for roofs and facades in the built environment. They also expand design possibilities for interior and exterior rooms and spaces. Nano–insulating materials open up new possibilities for ecologically oriented sustainable infrastructure development. It has been demonstrated that nanotechnology has invented products with many unique characteristics which could significantly provide solutions current construction issues and may change the requirement and organization of construction process. This paper examines and documents applicable nanotechnology based products that can improve the sustainable development and overall competitiveness of the construction industry.
  • Item
    Thumbnail Image
    Application of nano insulation materials in the sustainable built environment
    Gammampila, GRG ; Mendis, PAM ; Ngo, TDN ; Aye, LA ; Herath, NCH (University of Moratuwa, 2010)
    Nanotechnology is widely being used in the built environment for its advantages in many improved engineering properties of the nano materials. Nano insulating materials open up new possibilities for ecologically oriented sustainable infrastructure development. The most widely used nano material in built environment is for the purpose of insulation to improve the energy efficiency namely in the buildings and dwellings. Nanotechnology has now provided an effective and affordable means to increase energy efficiency in pre-existing buildings as well as new construction by increasing thermal resistance. The major advantage of nano insulation materials is its benefit of translucent coatings which increase the thermal envelope of a building without reducing the square footage. The intrinsic property of nano insulating material is it can be applied to windows to reduce heat transfer from solar radiation due it its thermal resistant property and the translucent property allows diffusing of day light. The nano insulating material has significant advantage in reducing the operational energy aspects of buildings due to its valuable insulating properties. This paper examines applicable nanotechnology based products that can improve the sustainable development and overall competitiveness of the building industry. The areas of applying nano insulating material in building industry will be mainly focused on the building envelope. The paper also examines the potential advantages of using nanotechnology based insulating material in reducing the life cycle energy, reduction of material usage and enhancing the useable life span. The paper also investigates the operational energy by simulation methodology and compares the reduction of operational energy consumption.
  • Item
    Thumbnail Image
    Design charts for piles socketed into rock
    Johnston, I ; Rahman, MM ; Jaksa, M (Australian Geomechanics Society, 2022)
    A method for the design of piles socketed into rock was published over 40 years ago by Williams et al. (1980). The method appears to describe pile response in a range of rock types of varying strength with a reasonable degree of accuracy. Recently, the design curves in the original paper were digitized and included in spreadsheets for rapid socketed pile design. This has led to the development of a series of design charts for use in preliminary design. This paper briefly explains the method and presents charts which can quickly provide the dimensions of socketed piles to suit a wide range of likely conditions.