Infrastructure Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 25
  • Item
    No Preview Available
    A 2D hydrodynamic model-based method for efficient flood inundation modelling
    Yang, Q ; Wu, W ; Wang, QJ ; Vaze, J (IWA PUBLISHING, 2022-09)
    Abstract Efficient and accurate flood inundation predictions can provide useful information for flood risk mitigation and water resource management. In this paper, we propose a new modelling method, LoHy + , which can be applied to efficiently simulate the spatiotemporal evolution of flood inundation with reasonable accuracy. The method integrates a low-fidelity two-dimensional (2D) hydrodynamic model and a mapping module to estimate water depth in a catchment during floods. The performance of the proposed modelling method was evaluated using a real-world catchment of approximate 2,000 km2, in the Southern Murray–Darling Basin, Australia. The results show that there is a good agreement between flood inundation obtained from the proposed method and that simulated using a high-fidelity 2D hydrodynamic model. The proposed method is much more efficient than the high-fidelity 2D hydrodynamic model, which makes it an alternative method for applications requiring many model runs or long simulation durations. Also, the LoHy+ model has the potential to be applied in flood inundation forecast, flood risk mitigation design water resource management, etc.
  • Item
    No Preview Available
    Improved Trend-Aware Postprocessing of GCM Seasonal Precipitation Forecasts
    Shao, Y ; Wang, QJ ; Schepen, A ; Ryu, D ; Pappenberger, F (AMER METEOROLOGICAL SOC, 2022-01)
    Abstract Climate trends have been observed over the recent decades in many parts of the world, but current global climate models (GCMs) for seasonal climate forecasting often fail to capture these trends. As a result, model forecasts may be biased above or below the trendline. In our previous research, we developed a trend-aware forecast postprocessing method to overcome this problem. The method was demonstrated to be effective for embedding observed trends into seasonal temperature forecasts. In this study, we further develop the method for postprocessing GCM seasonal precipitation forecasts. We introduce new formulation and evaluation features to cater for special characteristics of precipitation amounts, such as having a zero lower bound and highly positive skewness. We apply the improved method to calibrate ECMWF SEAS5 forecasts of seasonal precipitation for Australia. Our evaluation shows that the calibrated forecasts reproduce observed trends over the hindcast period of 36 years. In some regions where observed trends are statistically significant, forecast skill is greatly improved by embedding trends into the forecasts. In most regions, the calibrated forecasts outperform the raw forecasts in terms of bias, skill, and reliability. Wider applications of the new trend-aware postprocessing method are expected to boost user confidence in seasonal precipitation forecasts.
  • Item
    No Preview Available
    Deep Learning-Based Rapid Flood Inundation Modeling for Flat Floodplains With Complex Flow Paths
    Zhou, Y ; Wu, W ; Nathan, R ; Wang, QJ (Wiley, 2022-12-01)
    Flood inundation emulation models based on deep neural networks have been developed to overcome the computational burden of two-dimensional (2D) hydrodynamic models. Challenges remain for flat and complex floodplains where many anabranches form during flood events. In this study, we propose a new approach to simulate the temporal and spatial variation of flood inundation for a floodplain with complex flow paths. A U-Net-based spatial reduction and reconstruction method (USRR) is used to find representative locations on the floodplain with complex flow paths. The water depths at these locations are simulated using one-dimensional convolutional neural network (1D-CNN) models, which are well-suited to handling multivariate timeseries inputs. The flood surface is then reconstructed using the USRR method and the simulated flood depths at the representative locations. The combined 1D-CNN and USRR method is compared with a previously developed approach based on the long short-term memory recurrent neural network (LSTM) models and a 2D linear interpolation-based SRR method. Compared to the LSTM model, the 1D-CNN model is not only more accurate, but also takes less time to develop. Although both surface reconstruction methods take <1 s to produce an inundation map for a specific point in time, the USRR method is more accurate than the SRR method, leading to an increase of 5.6% in the proportion of correctly detected inundation area. The combination of 1D-CNN and USRR can detect over 95% of the inundated area simulated using a 2D hydrodynamic model but is 98 times faster.
  • Item
    No Preview Available
  • Item
  • Item
    No Preview Available
  • Item
    No Preview Available
    A hybrid framework for short-term irrigation demand forecasting
    Forouhar, L ; Wu, W ; Wang, QJ ; Hakala, K (ELSEVIER, 2022-11-01)
  • Item
    Thumbnail Image
    Upskilling Low-Fidelity Hydrodynamic Models of Flood Inundation Through Spatial Analysis and Gaussian Process Learning
    Fraehr, N ; Wang, QJ ; Wu, W ; Nathan, R (AMER GEOPHYSICAL UNION, 2022-08)
    Abstract Accurate flood inundation modeling using a complex high‐resolution hydrodynamic (high‐fidelity) model can be very computationally demanding. To address this issue, efficient approximation methods (surrogate models) have been developed. Despite recent developments, there remain significant challenges in using surrogate methods for modeling the dynamical behavior of flood inundation in an efficient manner. Most methods focus on estimating the maximum flood extent due to the high spatial‐temporal dimensionality of the data. This study presents a hybrid surrogate model, consisting of a low‐resolution hydrodynamic (low‐fidelity) and a Sparse Gaussian Process (Sparse GP) model, to capture the dynamic evolution of the flood extent. The low‐fidelity model is computationally efficient but has reduced accuracy compared to a high‐fidelity model. To account for the reduced accuracy, a Sparse GP model is used to correct the low‐fidelity modeling results. To address the challenges posed by the high dimensionality of the data from the low‐ and high‐fidelity models, Empirical Orthogonal Functions analysis is applied to reduce the spatial‐temporal data into a few key features. This enables training of the Sparse GP model to predict high‐fidelity flood data from low‐fidelity flood data, so that the hybrid surrogate model can accurately simulate the dynamic flood extent without using a high‐fidelity model. The hybrid surrogate model is validated on the flat and complex Chowilla floodplain in Australia. The hybrid model was found to improve the results significantly compared to just using the low‐fidelity model and incurred only 39% of the computational cost of a high‐fidelity model.
  • Item
    Thumbnail Image
    Introducing long-term trends into subseasonal temperature forecasts through trend-aware postprocessing
    Shao, Y ; Wang, QJ ; Schepen, A ; Ryu, D (WILEY, 2022-07)
    Abstract Skilful subseasonal forecasts are crucial for issuing early warnings of extreme weather events, such as heatwaves and floods. Operational subseasonal climate forecasts are often produced by global climate models not dissimilar to seasonal forecast models, which typically fail to reproduce observed temperature trends. In this study, we identify that the same issue exists in the subseasonal forecasting system. Subsequently, we adapt a trend‐aware forecast postprocessing method, previously developed for seasonal forecasts, to calibrate and correct the trend in subseasonal forecasts. We modify the method to embed 30‐year climate trends into the calibrated forecasts even when the available hindcast period is shorter. The use of 30‐year trends is to robustly represent long‐term climate changes and overcome the problem that trends inferred from a shorter period may be subject to large sampling variability. Calibration is applied to 20‐year ECMWF subseasonal forecasts and AWAP observations of Australian minimum and maximum temperatures with forecast horizons of up to 4 weeks. Relative to day‐of‐year climatology, raw week‐1 forecasts reproduce temperature trends of the 20‐year observations in many regions while raw week‐4 forecasts do not exhibit the 20‐year observed trends. After trend‐aware postprocessing, the behaviour of forecast trends is related to raw forecast skill regarding accuracy. Calibrated week‐1 forecasts show apparent trends consistent with the 20‐year observations, as the calibration transfers forecast skill and embeds the 20‐year observed trends into the forecasts when raw forecasts are inherently skilful. In contrast, calibrated week‐4 forecasts exhibit the 30‐year observed trends, as the calibration reverts the forecasts to the 30‐year observed climatology with trends when raw forecasts have little skill. For both weeks, the trend‐aware calibrated forecasts are more reliable, and as skilful as or more skilful than raw forecasts. The extended trend‐aware method can be applied to deliver high‐quality subseasonal forecasts and support decision‐making in a changing climate.
  • Item
    No Preview Available
    Propagating reliable estimates of hydrological forecast uncertainty to many lead times
    Bennett, JC ; Robertson, DE ; Wang, QJ ; Li, M ; Perraud, J-M (ELSEVIER, 2021-12)