Audiology and Speech Pathology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Speech and language in bilateral perisylvian polymicrogyria: a systematic review
    Braden, RO ; Leventer, RJ ; Jansen, A ; Scheffer, IE ; Morgan, AT (WILEY, 2019-10)
    AIM: We aimed to systematically review the speech production, language, and oral function phenotype of bilateral perisylvian polymicrogyria (BPP), and examine the correlation between the topography of polymicrogyria and the severity of speech, language, and oral functional impairment. METHOD: A systematic search of MEDLINE, Embase, and PubMed databases was completed on 26th October 2017 using Medical Subject Heading terms synonymous with BPP and speech, language, or oral motor impairment. In total, 2411 papers were identified and 48 met inclusion criteria. RESULTS: Expressive and receptive language impairment and oral structural and functional deficits are frequent in BPP. Expressive deficits are frequently more severe than receptive. Only one study used formal assessments to demonstrate the presence of speech disorder, namely dysarthria. Seven studies reported an association between diffuse BPP and more severe language impairment. INTERPRETATION: Findings confirmed that language deficits are common in BPP, though assessment of the specific speech phenotype is limited. The paucity of high quality studies detailing the specific communication phenotype of BPP highlights the need for further investigation. Improving understanding of this phenotype will inform the development of targeted therapies and lead to better long-term outcomes. WHAT THIS PAPER ADDS: Speech, language, and oral functional impairments are common in individuals with bilateral perisylvian polymicrogyria. Posterior polymicrogyria is associated with a less severe language impairment than anterior polymicrogyria. Deeper investigation of speech is needed to understand implicated networks in this malformation.
  • Item
    Thumbnail Image
    New Genes for Focal Epilepsies with Speech and Language Disorders (vol 15, pg 35, 2015)
    Turner, SJ ; Morgan, AT ; Perez, ER ; Scheffer, IE (SPRINGER, 2015-08)
  • Item
    No Preview Available
    Recessive variants in ZNF142 cause a complex neurodevelopmental disorder with intellectual disability, speech impairment, seizures, and dystonia
    Khan, K ; Zech, M ; Morgan, AT ; Amor, DJ ; Skorvanek, M ; Khan, TN ; Hildebrand, MS ; Jackson, VE ; Scerri, TS ; Coleman, M ; Rigbye, KA ; Scheffer, IE ; Bahlo, M ; Wagner, M ; Lam, DD ; Berutti, R ; Havrankova, P ; Fecikova, A ; Strom, TM ; Han, V ; Dosekova, P ; Gdovinova, Z ; Laccone, F ; Jameel, M ; Mooney, MR ; Baig, SM ; Jech, R ; Davis, EE ; Katsanis, N ; Winkelmann, J (NATURE PUBLISHING GROUP, 2019-11)
    PURPOSE: The purpose of this study was to expand the genetic architecture of neurodevelopmental disorders, and to characterize the clinical features of a novel cohort of affected individuals with variants in ZNF142, a C2H2 domain-containing transcription factor. METHODS: Four independent research centers used exome sequencing to elucidate the genetic basis of neurodevelopmental phenotypes in four unrelated families. Following bioinformatic filtering, query of control data sets, and secondary variant confirmation, we aggregated findings using an online data sharing platform. We performed in-depth clinical phenotyping in all affected individuals. RESULTS: We identified seven affected females in four pedigrees with likely pathogenic variants in ZNF142 that segregate with recessive disease. Affected cases in three families harbor either nonsense or frameshifting likely pathogenic variants predicted to undergo nonsense mediated decay. One additional trio bears ultrarare missense variants in conserved regions of ZNF142 that are predicted to be damaging to protein function. We performed clinical comparisons across our cohort and noted consistent presence of intellectual disability and speech impairment, with variable manifestation of seizures, tremor, and dystonia. CONCLUSION: Our aggregate data support a role for ZNF142 in nervous system development and add to the emergent list of zinc finger proteins that contribute to neurocognitive disorders.
  • Item
    Thumbnail Image
    A set of regulatory genes co-expressed in embryonic human brain is implicated in disrupted speech development
    Eising, E ; Carrion-Castillo, A ; Vino, A ; Strand, EA ; Jakielski, KJ ; Scerri, TS ; Hildebrand, MS ; Webster, R ; Ma, A ; Mazoyer, B ; Francks, C ; Bahlo, M ; Scheffer, IE ; Morgan, AT ; Shriberg, LD ; Fisher, SE (NATURE PUBLISHING GROUP, 2019-07)
    Genetic investigations of people with impaired development of spoken language provide windows into key aspects of human biology. Over 15 years after FOXP2 was identified, most speech and language impairments remain unexplained at the molecular level. We sequenced whole genomes of nineteen unrelated individuals diagnosed with childhood apraxia of speech, a rare disorder enriched for causative mutations of large effect. Where DNA was available from unaffected parents, we discovered de novo mutations, implicating genes, including CHD3, SETD1A and WDR5. In other probands, we identified novel loss-of-function variants affecting KAT6A, SETBP1, ZFHX4, TNRC6B and MKL2, regulatory genes with links to neurodevelopment. Several of the new candidates interact with each other or with known speech-related genes. Moreover, they show significant clustering within a single co-expression module of genes highly expressed during early human brain development. This study highlights gene regulatory pathways in the developing brain that may contribute to acquisition of proficient speech.
  • Item
    Thumbnail Image
    Early neuroimaging markers of FOXP2 intragenic deletion
    Liegeois, FJ ; Hildebrand, MS ; Bonthrone, A ; Turner, SJ ; Scheffer, IE ; Bahlo, M ; Connelly, A ; Morgan, AT (NATURE PORTFOLIO, 2016-10-13)
    FOXP2 is the major gene associated with severe, persistent, developmental speech and language disorders. While studies in the original family in which a FOXP2 mutation was found showed volume reduction and reduced activation in core language and speech networks, there have been no imaging studies of different FOXP2 mutations. We conducted a multimodal MRI study in an eight-year-old boy (A-II) with a de novo FOXP2 intragenic deletion. A-II showed marked bilateral volume reductions in the hippocampus, thalamus, globus pallidus, and caudate nucleus compared with 26 control males (effect sizes from -1 to -3). He showed no detectable functional MRI activity when repeating nonsense words. The hippocampus is implicated for the first time in FOXP2 diseases. We conclude that FOXP2 anomaly is either directly or indirectly associated with atypical development of widespread subcortical networks early in life.