Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Assessment of Machine-Learned Turbulence Models Trained for Improved Wake-Mixing in Low-Pressure Turbine Flows
    Pacciani, R ; Marconcini, M ; Bertini, F ; Rosa Taddei, S ; Spano, E ; Zhao, Y ; Akolekar, HD ; Sandberg, RD ; Arnone, A (MDPI, 2021-12)
    This paper presents an assessment of machine-learned turbulence closures, trained for improving wake-mixing prediction, in the context of LPT flows. To this end, a three-dimensional cascade of industrial relevance, representative of modern LPT bladings, was analyzed, using a state-of-the-art RANS approach, over a wide range of Reynolds numbers. To ensure that the wake originates from correctly reproduced blade boundary-layers, preliminary analyses were carried out to check for the impact of transition closures, and the best-performing numerical setup was identified. Two different machine-learned closures were considered. They were applied in a prescribed region downstream of the blade trailing edge, excluding the endwall boundary layers. A sensitivity analysis to the distance from the trailing edge at which they are activated is presented in order to assess their applicability to the whole wake affected portion of the computational domain and outside the training region. It is shown how the best-performing closure can provide results in very good agreement with the experimental data in terms of wake loss profiles, with substantial improvements relative to traditional turbulence models. The discussed analysis also provides guidelines for defining an automated zonal application of turbulence closures trained for wake-mixing predictions.
  • Item
    Thumbnail Image
    Transition Modeling for Low Pressure Turbines Using Computational Fluid Dynamics Driven Machine Learning
    Akolekar, HD ; Waschkowski, F ; Zhao, Y ; Pacciani, R ; Sandberg, RD (MDPI, 2021-08)
    Existing Reynolds Averaged Navier–Stokes-based transition models do not accurately predict separation induced transition for low pressure turbines. Therefore, in this paper, a novel framework based on computational fluids dynamics (CFD) driven machine learning coupled with multi-expression and multi-objective optimization is explored to develop models which can improve the transition prediction for the T106A low pressure turbine at an isentropic exit Reynolds number of Re2is=100,000. Model formulations are proposed for the transfer and laminar eddy viscosity terms of the laminar kinetic energy transition model using seven non-dimensional pi groups. The multi-objective optimization approach makes use of cost functions based on the suction-side wall-shear stress and the pressure coefficient. A family of solutions is thus developed, whose performance is assessed using Pareto analysis and in terms of physical characteristics of separated-flow transition. Two models are found which bring the wall-shear stress profile in the separated region at least two times closer to the reference high-fidelity data than the baseline transition model. As these models are able to accurately predict the flow coming off the blade trailing edge, they are also able to significantly enhance the wake-mixing prediction over the baseline model. This is the first known study which makes use of ‘CFD-driven’ machine learning to enhance the transition prediction for a non-canonical flow.
  • Item
    Thumbnail Image
    Machine-Learnt Turbulence Closures for Low-Pressure Turbines With Unsteady Inflow Conditions
    Akolekar, HD ; Sandberg, RD ; Hutchins, N ; Michelassi, V ; Laskowski, G (ASME, 2019-10)
    Abstract The design of low-pressure turbines (LPTs) must account for the losses generated by the unsteady interaction with the upstream blade row. The estimation of such unsteady wake-induced losses requires the accurate prediction of the incoming wake dynamics and decay. Existing linear turbulence closures (stress–strain relationships), however, do not offer an accurate prediction of the wake mixing. Therefore, machine-learnt, nonlinear turbulence closures (models) have been developed for LPT flows with unsteady inflow conditions using a zonal-based model development approach, with an aim to enhance the wake mixing prediction for unsteady Reynolds-averaged Navier–Stokes calculations. High-fidelity time-averaged and phase-lock averaged data at a realistic isentropic Reynolds number and two reduced frequencies, i.e., with discrete incoming wakes and with wake “fogging,” have been used as reference data for a machine learning algorithm based on gene expression programing to develop models. Models developed via phase-lock averaged data were able to capture the effect of certain prominent physical phenomena in LPTs such as wake–wake interactions, whereas models based on the time-averaged data could not. Correlations with the flow physics lead to a set of models that can effectively enhance the wake mixing prediction across the entire LPT domain for both cases. Based on a newly developed error metric, the developed models have reduced the a priori error over the Boussinesq approximation on average by 45%. This study thus aids blade designers in selecting the appropriate nonlinear closures capable of mimicking the physical mechanisms responsible for loss generation.
  • Item
    Thumbnail Image
    Development and Use of Machine-Learnt Algebraic Reynolds Stress Models for Enhanced Prediction of Wake Mixing in Low-Pressure Turbines
    Akolekar, HD ; Weatheritt, J ; Hutchins, N ; Sandberg, RD ; Laskowski, G ; Michelassi, V (American Society of Mechanical Engineers, 2019-04-01)
    Nonlinear turbulence closures were developed that improve the prediction accuracy of wake mixing in low-pressure turbine (LPT) flows. First, Reynolds-averaged Navier–Stokes (RANS) calculations using five linear turbulence closures were performed for the T106A LPT profile at isentropic exit Reynolds numbers 60,000 and 100,000. None of these RANS models were able to accurately reproduce wake loss profiles, a crucial parameter in LPT design, from direct numerical simulation (DNS) reference data. However, the recently proposed kv2¯ω transition model was found to produce the best agreement with DNS data in terms of blade loading and boundary layer behavior and thus was selected as baseline model for turbulence closure development. Analysis of the DNS data revealed that the linear stress–strain coupling constitutes one of the main model form errors. Hence, a gene-expression programming (GEP) based machine-learning technique was applied to the high-fidelity DNS data to train nonlinear explicit algebraic Reynolds stress models (EARSM), using different training regions. The trained models were first assessed in an a priori sense (without running any RANS calculations) and showed much improved alignment of the trained models in the region of training. Additional RANS calculations were then performed using the trained models. Importantly, to assess their robustness, the trained models were tested both on the cases they were trained for and on testing, i.e., previously not seen, cases with different flow features. The developed models improved prediction of the Reynolds stress, turbulent kinetic energy (TKE) production, wake-loss profiles, and wake maturity, across all cases.
  • Item
    Thumbnail Image
    RANS turbulence model development using CFD-driven machine learning
    Zhao, Y ; Akolekar, HD ; Weatheritt, J ; Michelassi, V ; Sandberg, RD (Elsevier, 2020-06-15)
    This paper presents a novel CFD-driven machine learning framework to develop Reynolds-averaged Navier-Stokes (RANS) models. The CFD-driven training is an extension of the gene expression programming method Weatheritt and Sandberg (2016) [8], but crucially the fitness of candidate models is now evaluated by running RANS calculations in an integrated way, rather than using an algebraic function. Unlike other data-driven methods that fit the Reynolds stresses of trained models to high-fidelity data, the cost function for the CFD-driven training can be defined based on any flow feature from the CFD results. This extends the applicability of the method especially when the training data is limited. Furthermore, the resulting model, which is the one providing the most accurate CFD results at the end of the training, inherently shows good performance in RANS calculations. To demonstrate the potential of this new method, the CFD-driven machine learning approach is applied to model development for wake mixing in turbomachines. A new model is trained based on a high-pressure turbine case and then tested for three additional cases, all representative of modern turbine nozzles. Despite the geometric configurations and operating conditions being different among the cases, the predicted wake mixing profiles are significantly improved in all of these a posteriori tests. Moreover, the model equation is explicitly given and available for analysis, thus it could be deduced that the enhanced wake prediction is predominantly due to the extra diffusion introduced by the CFD-driven model.