Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Effect Of Arm Deweighting Using End-Effector Based Robotic Devices On Muscle Activity.
    Fong, J ; Crocher, V ; Haddara, R ; Ackland, D ; Galea, M ; Tan, Y ; Oetomo, D (IEEE, 2018)
    Deweighting of the limb is commonly performed for patients with a neurological injury, such as stroke, as it allows these patients with limited muscle activity to perform movements. Deweighting has been implemented in exoskeletons and other multi-contact devices, but not on an end-effector based device with single contact point between the assisting robot and the human limb being assisted. This study inves-tigates the effects of deweighting using an end-effector based device on healthy subjects. The muscle activity of five subjects was measured in both static postures and dynamic movements. The results indicate a decrease in the activity of muscles which typically act against gravity - such as the anterior deltoid and the biceps brachii - but also suggest an increase in activity in muscles which act with gravity - such as the posterior deltoid and the lateral triceps. This can be explained by both the change in required muscle-generated torques and a conscious change in approach by the participants. These observations have implications for neurorehabilitation, particularly with respect to the muscle activation patterns which are trained through rehabilitation exercises.
  • Item
    Thumbnail Image
    Promoting clinical best practice in a user-centred design study of an upper limb rehabilitation robot
    Fong, J ; Crocher, V ; Klaic, M ; Davies, K ; Rowse, A ; Sutton, E ; Tan, Y ; Oetomo, D ; Brock, K ; Galea, MP (Taylor & Francis, 2021-01-01)
    Purpose: Despite their promise to increase therapy intensity in neurorehabilitation, robotic devices have not yet seen mainstream adoption. Whilst there are a number of contributing factors, it is obvious that the treating clinician should have a clear understanding of the objectives and limitations of robotic device use. This study sought to explore how devices can be developed to support a clinician in providing clinical best practice. Methods and Materials: A user-centred design study of a robotic device was conducted, involving build-then-use iterations, where successive iterations are built based on feedback from the use cycle. This work reports results of an analysis of qualitative and quantitative data describing the use of the robotic device in the clinical sessions, and from a focus group with the treating clinicians. Results and Conclusions: The data indicated that use of the device did not result in patient goal-setting and may have resulted in poor movement quality. Therapists expected a higher level of autonomy from the robotic device, and this may have contributed to the above problems. These problems can and should be addressed through modification of both the study design and device to provide more explicit instructions to promote clinical best practice. Implications for Rehabilitation: • Encouraging clinical best practice when using evaluating prototype devices within a clinical setting is important to ensure that best practice is maintained - and can be achieved through both study and device design • Support from device developers can significantly improve the confidence of therapists during the use of that device in rehabilitation, particularly with new or prototype devices • End effector-based robotic devices for rehabilitation show potential for a wide variety of patient presentations and capabilities.
  • Item
    Thumbnail Image
    Learning control in robot-assisted rehabilitation of motor skills–a review
    Zhou, SH ; Fong, J ; Crocher, V ; Tan, Y ; Oetomo, D ; Mareels, I (Informa UK Limited, 2016-01-02)