Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Exploratory analysis of high-throughput metabolomic data
    Wijetunge, CD ; Li, Z ; Saeed, I ; Bowne, J ; Hsu, AL ; Roessner, U ; Bacic, A ; Halgamuge, SK (SPRINGER, 2013-12)
  • Item
    Thumbnail Image
    A new peak detection algorithm for MALDI mass spectrometry data based on a modified Asymmetric Pseudo-Voigt model
    Wijetunge, C ; Saeed, I ; BOUGHTON, BA ; Roessner, U ; Halgamuge, SK (BioMed Central, 2015-12-09)
    Background Mass Spectrometry (MS) is a ubiquitous analytical tool in biological research and is used to measure the mass-to-charge ratio of bio-molecules. Peak detection is the essential first step in MS data analysis. Precise estimation of peak parameters such as peak summit location and peak area are critical to identify underlying bio-molecules and to estimate their abundances accurately. We propose a new method to detect and quantify peaks in mass spectra. It uses dual-tree complex wavelet transformation along with Stein's unbiased risk estimator for spectra smoothing. Then, a new method, based on the modified Asymmetric Pseudo-Voigt (mAPV) model and hierarchical particle swarm optimization, is used for peak parameter estimation. Results Using simulated data, we demonstrated the benefit of using the mAPV model over Gaussian, Lorentz and Bi-Gaussian functions for MS peak modelling. The proposed mAPV model achieved the best fitting accuracy for asymmetric peaks, with lower percentage errors in peak summit location estimation, which were 0.17% to 4.46% less than that of the other models. It also outperformed the other models in peak area estimation, delivering lower percentage errors, which were about 0.7% less than its closest competitor - the Bi-Gaussian model. In addition, using data generated from a MALDI-TOF computer model, we showed that the proposed overall algorithm outperformed the existing methods mainly in terms of sensitivity. It achieved a sensitivity of 85%, compared to 77% and 71% of the two benchmark algorithms, continuous wavelet transformation based method and Cromwell respectively. Conclusions The proposed algorithm is particularly useful for peak detection and parameter estimation in MS data with overlapping peak distributions and asymmetric peaks. The algorithm is implemented using MATLAB and the source code is freely available at http://mapv.sourceforge.net
  • Item
    Thumbnail Image
    EXIMS: an improved data analysis pipeline based on a new peak picking method for EXploring Imaging Mass Spectrometry data
    Wijetunge, CD ; Saeed, I ; Boughton, BA ; Spraggins, JM ; Caprioli, RM ; Bacic, A ; Roessner, U ; Halgamuge, SK (OXFORD UNIV PRESS, 2015-10-01)
    MOTIVATION: Matrix Assisted Laser Desorption Ionization-Imaging Mass Spectrometry (MALDI-IMS) in 'omics' data acquisition generates detailed information about the spatial distribution of molecules in a given biological sample. Various data processing methods have been developed for exploring the resultant high volume data. However, most of these methods process data in the spectral domain and do not make the most of the important spatial information available through this technology. Therefore, we propose a novel streamlined data analysis pipeline specifically developed for MALDI-IMS data utilizing significant spatial information for identifying hidden significant molecular distribution patterns in these complex datasets. METHODS: The proposed unsupervised algorithm uses Sliding Window Normalization (SWN) and a new spatial distribution based peak picking method developed based on Gray level Co-Occurrence (GCO) matrices followed by clustering of biomolecules. We also use gist descriptors and an improved version of GCO matrices to extract features from molecular images and minimum medoid distance to automatically estimate the number of possible groups. RESULTS: We evaluated our algorithm using a new MALDI-IMS metabolomics dataset of a plant (Eucalypt) leaf. The algorithm revealed hidden significant molecular distribution patterns in the dataset, which the current Component Analysis and Segmentation Map based approaches failed to extract. We further demonstrate the performance of our peak picking method over other traditional approaches by using a publicly available MALDI-IMS proteomics dataset of a rat brain. Although SWN did not show any significant improvement as compared with using no normalization, the visual assessment showed an improvement as compared to using the median normalization. AVAILABILITY AND IMPLEMENTATION: The source code and sample data are freely available at http://exims.sourceforge.net/. CONTACT: awgcdw@student.unimelb.edu.au or chalini_w@live.com SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.