Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Modelling the effect of roughness density on turbulent forced convection
    Abu Rowin, W ; Zhong, K ; Saurav, T ; Jelly, T ; Hutchins, N ; Chung, D (Cambridge University Press, 2024-01-11)
    By examining a systematic set of direct numerical simulations, we develop a model which captures the effect of roughness density on global and local heat transfer in forced convection. The surfaces considered are zero-skewed three-dimensional sinusoidal rough walls with solidities, Λ (defined as the frontal area divided by the total plan area), ranging from low Λ=0.09, medium Λ=0.18 to high Λ=0.36. For each solidity, we vary the roughness height characterised by the roughness Reynolds number, k+, from transitionally rough to fully rough conditions. The findings indicate that, as the fully rough regime is approached, there is a pronounced breakdown in the analogy between heat and momentum transfer, whereby the velocity roughness function ΔU+ continues to increase and the temperature roughness function ΔΘ+ attains a peak with increasing k+. This breakdown occurs at higher sand-grain roughness Reynolds numbers (k+s) with increasing solidity. Locally, we find that the heat transfer can be meaningfully partitioned into two categories: exposed, high-shear regions experiencing higher heat transfer obeying a local Reynolds analogy and sheltered, reversed-flow regions experiencing lower and spatially uniform heat transfer. The relative contribution of these distinct mechanisms to the global heat transfer depends on the fraction of the total surface area covered by these regions, which ultimately depends on Λ. These insights enable us to develop a model for the rough-wall heat-transfer coefficient, Ch,k(k+,Λ,Pr), where Pr is the molecular Prandtl number, that assumes different heat-transfer laws in exposed and sheltered regions. We show that the exposed–sheltered surface-area fractions can be modelled through simple ray tracing that is solely dependent on the surface topography and a prescribed sheltering angle. Model predictions compare well when applied to heat-transfer data of traverse ribs from the literature.
  • Item
    No Preview Available
    High-Fidelity Computational Assessment of Aero-Thermal Performance and the Reynolds' Analogy for Additively Manufactured Anisotropic Surface Roughness
    Jelly, TO ; Abu Rowin, W ; Hutchins, N ; Chung, D ; Tanimoto, K ; Oda, T ; Sandberg, RD (ASME, 2023-11-01)
    Abstract Direct numerical simulations of incompressible turbulent forced convection over irregular, anisotropic surface roughness in a pressure-driven plane channel flow have been performed. Heat transfer was simulated by solving the passive scalar transport equation with Prandtl number Pr = 0.7. The roughness topographies under investigation here are based on an X-ray computed tomography scan of an additively manufactured internal cooling passage, which had an irregular, multiscale and mildly non-Gaussian height distribution. Three different roughness topographies and three different friction Reynolds numbers (Reτ = 395, 590, 720) were considered, along with reference smooth-wall simulations at matched Reτ. By systematically varying the roughness topography and flow conditions, a direct computational assessment of aero-thermal performance (pressure losses and heat transfer) and the Reynolds analogy factor, i.e., 2Ch/Cf, where Ch is the heat-transfer coefficient (Stanton number) and Cf is the skin-friction coefficient, was conducted. The results highlight the profound impact that the roughness orientation (relative to the flow direction) has upon the aero-thermal performance of additively manufactured internal passages, with transverse-aligned roughness augmenting heat transfer by as much as 33%, relative to its streamwise-aligned counterpart. An interrogation of velocity and temperature statistics in the near-wall region was also performed, which underlined the growing dissimilarity between heat transfer and drag as fully rough conditions are approached.
  • Item
    No Preview Available
    Investigation of cold-wire spatial and temporal resolution issues in thermal turbulent boundary layers
    Xia, Y ; Rowin, WA ; Jelly, T ; Marusic, I ; Hutchins, N (ELSEVIER SCIENCE INC, 2022-04)
  • Item
    No Preview Available
    The Effects of Anisotropic Surface Roughness on Turbulent Boundary-Layer Flow
    Ramani, A ; Nugroho, B ; Busse, A ; Monty, JP ; Hutchins, N ; Jelly, TO (The University of Queensland, 2020-01-01)